Tìm tất cả các giá trị thực của tham số m sao cho hàm số y=(tanx−2)/(tanx−m) đồng biến trên khoảng (0;π/4)

(Đề minh họa THPTQG – 2017 lần 1) Tìm tất cả các giá trị thực của tham số m sao cho hàm số  \( y=\frac{\tan x-2}{\tan x-m} \) đồng biến trên khoảng  \( \left( 0;\frac{\pi }{4} \right) \).

A.  \( m\le 0 \) hoặc  \( 1\le m<2 \)

B. \( m\le 0 \)

C. \( 1\le m<2 \)

D. \( m\ge 2 \).

Hướng dẫn giải:

 Đáp án A.

Đặt\( t=\tan x\overset{x\in \left( 0;\frac{\pi }{4} \right)}{\rightarrow}t\in (0;1) \).

Do \( t=\tan x \) đồng biến trên khoảng \( \left( 0;\frac{\pi }{4} \right) \) (có thể dùng hàm số kiểm tra: \( {t}’=\frac{1}{{{\cos }^{2}}x}>0,\forall x\in \left( 0;\frac{\pi }{4} \right) \))

Nên yêu cầu bài toán sẽ giữ nguyên đồng biến  \( \to \) đồng biến hay bài toán phát biểu lại thành:

“Tìm tất cả các giá trị thực của m sao cho hàm số  \( y=\frac{t-2}{t-m} \) đồng biến trên khoảng (0;1)”.

Bài toán tương đương:  \( {y}’=\frac{-m+2}{{{(t-m)}^{2}}}>0,\forall t\in (0;1) \)

 \( \Leftrightarrow \left\{ \begin{align}& -m+2>0 \\& m\notin (0;1) \\\end{align} \right. \)\ \(\Leftrightarrow \left\{\begin{matrix} m<2 \\ \left [ \begin{matrix} m\le 0 \\ m\ge 1 \end{matrix} \right. \end{matrix}\right. \) \( \Leftrightarrow \left[ \begin{align}& m\le 0 \\& 1\le m<2 \\\end{align} \right. \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *