Cho hàm số y=asinx+bcosx+x với a, b là các tham số thực. Điều kiện của a, b để hàm số đồng biến trên R

Cho hàm số  \( y=asinx+bcosx+x \) với a, b là các tham số thực. Điều kiện của a, b để hàm số đồng biến trên R là:

A. \( \forall a,b\in R \)

B. \( {{a}^{2}}+{{b}^{2}}\le 1 \)

C.\( a=b=\frac{\sqrt{2}}{2} \)                   

D. \( {{a}^{2}}+{{b}^{2}}=1 \)

Hướng dẫn giải:

Đáp án B.

Hàm số đồng biến trên  \( \mathbb{R} \)  \( \Leftrightarrow {y}’=a\cos x-b\sin x+1\ge 0,\forall x\in \mathbb{R} \) (*)

Ta có:  \({{\left( a\cos x-b\sin x \right)}^{2}}\le \left( {{a}^{2}}+{{b}^{2}} \right)\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)={{a}^{2}}+{{b}^{2}} \)

 \( \Leftrightarrow -\sqrt{{{a}^{2}}+{{b}^{2}}}\le a\cos x-b\sin x\le \sqrt{{{a}^{2}}+{{b}^{2}}} \)

 \( \Leftrightarrow 1-\sqrt{{{a}^{2}}+{{b}^{2}}}\le a\cos x-b\sin x+1\le 1+\sqrt{{{a}^{2}}+{{b}^{2}}} \) hay  \( \left( a\cos x-b\sin x+1 \right)\in \left[ 1-\sqrt{{{a}^{2}}+{{b}^{2}}};1+\sqrt{{{a}^{2}}+{{b}^{2}}} \right] \).

Khi đó (*)\(\Leftrightarrow 1-\sqrt{{{a}^{2}}+{{b}^{2}}}\ge 0\Leftrightarrow \sqrt{{{a}^{2}}+{{b}^{2}}}\le 1\Leftrightarrow {{a}^{2}}+{{b}^{2}}\le 1\)

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *