Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y=(x−m^2)/(−2x−m) trên đoạn [0;4] bằng −1

Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số \( y=\frac{x-{{m}^{2}}-2}{x-m} \) trên đoạn  \( \left[ 0;4 \right] \) bằng  \( -1 \).

A. 3

B. 2

C. 1                                   

D. 0

Hướng dẫn giải:

Đáp án C.

Tập xác định:  \( D=\mathbb{R}\backslash \{m\} \).

 \( {y}’=\frac{{{m}^{2}}-m+2}{{{\left( x-m \right)}^{2}}}>0,\forall x\ne m  \).

Do đó, hàm số đồng biến trên mỗi khoảng  \( \left( -\infty ;m \right) \) và  \( \left( m;+\infty  \right) \).

Bảng biến thiên của hàm số:

 

Từ bảng biến thiên suy ra, hàm số đạt giá trị lớn nhất trên [0;4] bằng  \( -1 \) khi  \( \left\{ \begin{align}  & m<0 \\  & f(4)=-1 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m<0 \\  & \frac{2-{{m}^{2}}}{4-m}=-1 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m<0 \\  & {{m}^{2}}+m-6=0 \\ \end{align} \right. \) \( \Leftrightarrow \begin{cases} m<0  \\\left[\begin{array}{l} m=2  \\ m=-3 \end{array}\right.\end{cases} \Leftrightarrow m=-3\)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *