Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=(x+m)/(x+1) trên đoạn [1;2] bằng 8

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \( y=\frac{x+m}{x+1} \) trên đoạn  \( \left[ 1;2 \right] \) bằng 8 (m là tham số thực). Khẳng định nào sau đây là đúng?

A. m > 10

B. 8 < m < 10

C. 0 < m < 4                   

D. 4 < m < 8

Hướng dẫn giải:

Đáp án B.

Ta có: \( {y}’=\frac{1-m}{{{(x+1)}^{2}}} \).

+ Nếu m = 1  \( \Rightarrow y=1 \) (loại).

+ Nếu  \( m\ne 1 \) khi đó  \( {y}'<0,\forall x\in \left[ 1;2 \right] \) hoặc  \( {y}’>0,\forall x\in \left[ 1;2 \right] \) nên hàm số đạt giá trị lớn nhất và nhỏ nhất tại x = 1, x = 2.

Theo bài ra: \(\underset{[1;2]}{\mathop{Max}}\,y+\underset{[1;2]}{\mathop{min }}\,y=8\)\(\Leftrightarrow y(1)+y(2)=\frac{1+m}{2}+\frac{2+m}{3}=8\)\(\Leftrightarrow m=\frac{41}{5}\in \left( 8;10 \right)\)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *