Cho hàm số y = f(x) và y = g(x) đều nghịch biến trên R. Cho các khẳng định sau:

Cho hàm số y = f(x) và y = g(x) đều nghịch biến trên R. Cho các khẳng định sau:

I. Hàm số y = f(x) + g(x) nghịch biến trên R.

II. Hàm số y = f(x).g(x) nghịch biến trên R

III. Hàm số y = f(x) – g(x) nghịch biến trên R

IV. Hàm số y = kf(x) (với k \( \ne \) 0) nghịch biến trên R.

Có bao nhiêu khẳng định đúng?

A. 1

B. 2                                   

C. 3                                   

D. 4

Hướng dẫn giải:

 Đáp án A.                        

Do  \(y=f(x) \) và  \( y=g(x) \) đều nghịch biến trên \(\mathbb{R}\) nên \(\forall {{x}_{1}},{{x}_{2}}\in \mathbb{R}:{{x}_{1}}<{{x}_{2}}\)\(\Rightarrow \left\{ \begin{align}& f({{x}_{1}})>f({{x}_{2}}) \\& g({{x}_{1}})>g({{x}_{2}}) \\\end{align} \right.\begin{matrix}{} & (*)  \\\end{matrix}\)

Từ (*), suy ra:  \( f({{x}_{1}})+g({{x}_{1}})>f({{x}_{2}})+g({{x}_{2}}) \) đúng (vì \( \left\{ \begin{align}& a>b \\ & c>d \\\end{align} \right.\Rightarrow a+c>b+d \))  \( \Rightarrow  \) I đúng.

\( f({{x}_{1}}).g({{x}_{1}})>f({{x}_{2}}).g({{x}_{2}}) \) không đúng (vì chỉ đúng khi \( \left\{ \begin{align}& a>b>0 \\& c>d>0 \\\end{align} \right.\Rightarrow ac>bd \)) \( \Rightarrow \)  II sai.

 \( f({{x}_{1}})-g({{x}_{1}})>f({{x}_{2}})-g({{x}_{2}}) \) không đúng (vì \( \left\{ \begin{align}& a>b \\& c>d \\\end{align} \right.\Rightarrow a-c>b-d \) là không đủ cơ sở )  \( \Rightarrow \)  III sai.

 \( kf({{x}_{1}})>kf({{x}_{2}}) \) không đúng (vì chỉ đúng khi k > 0)  \( \Rightarrow \)  IV sai.

Vậy chỉ có duy nhất I đúng, nghĩa là có 1 khẳng định đúng.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *