Trong tất cả các giá trị của m để hàm số y=−2x^3+3(m+1)x^2−6mx−1 đồng biến trên khoảng (−2;0) thì m=mO là giá trị lớn nhất

Trong tất cả các giá trị của m để hàm số  \( y=-2{{x}^{3}}+3\left( m+1 \right){{x}^{2}}-6mx-1 \) đồng biến trên khoảng  \( \left( -2;0 \right) \) thì \( m={{m}_{O}} \) là giá trị lớn nhất. Hỏi trong các số sau, đâu là số gần mO nhất?

A. 2

B. -1

C. 4                                   

D. -4

Hướng dẫn giải:

 Đáp án B.

Yêu cầu bài toán tương đương: \({y}’=-6{{x}^{2}}+6(m+1)x-6m\ge 0,\forall x\in (-2;0)\)

\(\Leftrightarrow {{x}^{2}}-(m+1)x+m\le 0,\forall x\in (-2;0)\Leftrightarrow {{x}^{2}}-mx-x+m\le 0\)

\(\Leftrightarrow m(1-x)\le -{{x}^{2}}+x\Leftrightarrow m\le \frac{-{{x}^{2}}+x}{1-x},\forall x\in (-2;0)\)

\(\Leftrightarrow m\le \underset{[-2;0]}{\mathop \min f(x)}\,=-2\)

\( \Rightarrow m={{m}_{0}}=-2 \) gần -1 nhất.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *