Tìm tất cả các giá trị của tham số m để đồ thị hàm số y=(m+1)x^4−2(2m−3)x^2+6m+5 cắt trục hoành tại 4 điểm phân biệt có các hoành độ x1,x2,x3,x4 thỏa mãn x1<x2<x3<1<x4

Tìm tất cả các giá trị của tham số m để đồ thị hàm số \( y=\left( m+1 \right){{x}^{4}}-2\left( 2m-3 \right){{x}^{2}}+6m+5 \) cắt trục hoành tại 4 điểm phân biệt có các hoành độ  \( {{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}} \) thỏa mãn  \( {{x}_{1}}<{{x}_{2}}<{{x}_{3}}<1<{{x}_{4}} \).

A. \(m\in \left( -1;-\frac{5}{6} \right)\)

B. \(m\in \left( -3;-1 \right)\)

C. \(m\in \left( -3;1 \right)\)  

D. \(m\in \left( -4;-1 \right)\)

Hướng dẫn giải:

Đáp án D.

Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là

 \( \left( m+1 \right){{x}^{4}}-2\left( 2m-3 \right){{x}^{2}}+6m+5=0 \)  (1)

Đặt  \( t={{x}^{2}}\ge 0 \) phương trình trở thành:  \( \left( m+1 \right){{t}^{2}}-2\left( 2m-3 \right)t+6m+5=0 \)  (2)

Cách 1:

 \( g(t)=\left( m+1 \right){{t}^{2}}-2\left( 2m-3 \right)t+6m+5 \)

Để phương trình (1) có 4 nghiệm phân biệt thì phương trình (2) phải có 2 nghiệm dương phân biệt

Hay  \( \left\{ \begin{align}  & m+1\ne 0 \\  & {\Delta }’>0 \\  & {{t}_{1}}.{{t}_{2}}>0 \\  & {{t}_{1}}+{{t}_{2}}>0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\ne -1 \\  & {{\left( 2m-3 \right)}^{2}}-\left( m+1 \right)\left( 6m+5 \right)>0 \\  & \frac{6m+5}{m+1}>0 \\  & \frac{2m-3}{m+1}>0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & m\ne -1 \\  & \frac{-23-\sqrt{561}}{4}<m<\frac{-23+\sqrt{561}}{4} \\  & m<-1\vee m>-\frac{5}{6} \\  & m<-1\vee m>\frac{3}{2} \\ \end{align} \right. \)   (*)

Để phương trình (1) có 4 nghiệm thỏa mãn  \( {{x}_{1}}<{{x}_{2}}<{{x}_{3}}<1<{{x}_{4}} \) thì phương trình (2) phải có 2 nghiệm thỏa  \( 0<{{t}_{1}}<1<{{t}_{2}} \)

 \( \Leftrightarrow \left\{ \begin{align}  & {{t}_{1}}-1<0 \\  & {{t}_{2}}-1>0 \\ \end{align} \right.\Leftrightarrow \left( {{t}_{1}}-1 \right)\left( {{t}_{2}}-1 \right)<0 \) \( \Leftrightarrow {{t}_{1}}{{t}_{2}}-\left( {{t}_{1}}+{{t}_{2}} \right)+1<0 \)

 \( \Leftrightarrow \frac{6m+5}{m+1}-\frac{2\left( 2m-3 \right)}{m+1}+1<0 \) \( \Leftrightarrow \frac{3m+12}{m+1}<0\Leftrightarrow -4<m<-1 \)

Kết hợp với (*) ta có:  \( m\in \left( -4;-1 \right) \) thỏa yêu cầu bài toán.

Cách 2:

Để phương trình (1) có 4 nghiệm thỏa mãn  \( {{x}_{1}}<{{x}_{2}}<{{x}_{3}}<1<{{x}_{4}} \) thì phương trình (2) phải có 2 nghiệm thỏa  \( 0<{{t}_{1}}<1<{{t}_{2}} \)

Phương trình (2)  \( \Leftrightarrow m=\frac{-{{t}^{2}}-6t-5}{{{t}^{2}}-4t+6} \) (biểu thức  \( v \))

Xét hàm số  \( f(t)=\frac{-{{t}^{2}}-6t-5}{{{t}^{2}}-4t+6} \) với  \( t\in \left( 0;+\infty  \right) \).

Ta có f(t) liên tục trên  \( \left( 0;+\infty  \right) \) và có  \( {f}'(t)=\frac{10{{t}^{2}}-2t-56}{{{\left( {{t}^{2}}-4t+6 \right)}^{2}}} \)

 \( {f}'(t)=0\Leftrightarrow \left[ \begin{align} & t=\frac{1-\sqrt{561}}{10}<0 \\  & t=\frac{1+\sqrt{561}}{10}>1 \\ \end{align} \right. \)

Bảng biến thiên

 

Dựa vào bảng biến thiên ta thấy đường thẳng y = m cắt đồ thị hàm số  \( f(t)=\frac{-{{t}^{2}}-6t-5}{{{t}^{2}}-4t+6} \) tại hai giao điểm có hoành độ thỏa  \( 0<{{t}_{1}}<1<{{t}_{2}} \) khi  \( -4<m<-1 \).

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *