Tất cả các giá trị thực của tham số m để hàm số y=(sinx+m)/(sinx−m) nghịch biến trên khoảng (π2;π)

Tất cả các giá trị thực của tham số m để hàm số  \( y=\frac{sinx+m}{\sin x-m} \) nghịch biến trên khoảng  \( \left( \frac{\pi }{2};\pi \right) \) là:

A. m < 0

B.  \( m\le 0 \) hoặc \( m\ge 1 \)                                        

C.  \( 0<m\le 1 \)                      

D. m > -1

Hướng dẫn giải:

 Đáp án A.

Đặt \( t=\sin x\overset{x\in \left( \frac{\pi }{2};\pi  \right)}{\rightarrow}t\in (0;1) \).

Do  \( t=\sin x \) nghịch biến trên khoảng  \( \left( \frac{\pi }{2};\pi  \right) \). (có thể dùng hàm số kiểm tra:  \({t}’=\cos x<0,\forall x\in \left( \frac{\pi }{2};\pi  \right) \))

Nên yêu cầu bài toán sẽ chuyển đổi từ nghịch biến  \( \to \)  đồng biến hay bài toán phát biểu lại là:

“Tìm tất cả các giá trị của m để hàm số \( y=\frac{t+m}{t-m} \) đồng biến trên khoảng (0;1)”

Khi đó, yêu cầu bài toán  \( \Leftrightarrow {y}’=\frac{-2m}{{{(t-m)}^{2}}}>0,\forall t\in (0;1) \)

 \( \Leftrightarrow \left\{ \begin{align}& t=m\notin (0;1) \\ & -2m>0 \\\end{align} \right. \) \(\Leftrightarrow \left\{\begin{matrix} \left [ \begin{matrix} m\le 0 \\ m\ge 1 \end{matrix} \right. \\ m<0\end{matrix}\right. \)\( \Leftrightarrow m<0 \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *