Gọi A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn cho các số phức \( {{z}_{1}},{{z}_{2}} \) khác 0 thỏa mãn đẳng thức \( z_{1}^{2}+z_{2}^{2}-{{z}_{1}}{{z}_{2}}=0 \), khi đó tam giác OAB (O là gốc tọa độ):
A. Là tam giác đều
B. Là tam giác vuông
C. Là tam giác cân, không đều
D. Là tam giác tù.
Hướng dẫn giải:
Đáp án A.
Cách 1:
+ Gọi \( {{z}_{1}}=a+bi \) ( \( a,b\in \mathbb{R}:{{a}^{2}}+{{b}^{2}}\ne 0 \)). A(a;b)
Khi đó \( {{z}_{2}} \) là nghiệm phương trình: \( z_{2}^{2}-(a+bi){{z}_{2}}+{{(a+bi)}^{2}}=0 \)
+ Ta có: \( \Delta ={{(a+bi)}^{2}}-4{{(a+bi)}^{2}}=-3{{(a+bi)}^{2}}={{\left[ \sqrt{3}(a+bi)i \right]}^{2}}={{\left[ \sqrt{3}(ai-b) \right]}^{2}} \)
Phương trình có hai nghiệm phân biệt:
\( {{z}_{2}}=\frac{a-\sqrt{3}b}{2}+\frac{\sqrt{3}a+b}{2}i \) nên \(B\left( \frac{a-\sqrt{3}b}{2};\frac{\sqrt{3}a+b}{2} \right) \)
Hoặc \( {{z}_{2}}=\frac{a+\sqrt{3}b}{2}+\frac{-\sqrt{3}a+b}{2}i \) nên \( B\left( \frac{a+\sqrt{3}b}{2};\frac{-\sqrt{3}a+b}{2} \right) \)
+ Tính \(O{{A}^{2}}={{a}^{2}}+{{b}^{2}};\text{ }O{{B}^{2}}={{a}^{2}}+{{b}^{2}}\text{; }A{{B}^{2}}={{a}^{2}}+{{b}^{2}}\). Vậy tam giác OAB đều.
Cách 2:
Theo giả thiết: \( z_{1}^{2}+z_{2}^{2}-{{z}_{1}}{{z}_{2}}=0\Rightarrow \left( {{z}_{1}}+{{z}_{2}} \right)\left( z_{1}^{2}+z_{2}^{2}-{{z}_{1}}{{z}_{2}} \right)=0 \)
\( \Leftrightarrow z_{1}^{3}+z_{2}^{3}=0\Leftrightarrow z_{1}^{3}=-z_{2}^{3}\Leftrightarrow \left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|\Rightarrow OA=OB \)
Mặt khác: \( z_{1}^{2}+z_{2}^{2}-{{z}_{1}}{{z}_{2}}=0\Leftrightarrow {{({{z}_{1}}-{{z}_{2}})}^{2}}=-{{z}_{1}}{{z}_{2} }\)
\( \Rightarrow \left| {{({{z}_{1}}-{{z}_{2}})}^{2}} \right|=\left| -{{z}_{1}}{{z}_{2}} \right|\Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}^{2}}=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\Rightarrow A{{B}^{2}}=OA.OB \)
Mà OA = OB nên AB = OA = OB.
Vậy tam giác OAB đều.
Cách 3:
\( z_{1}^{2}+z_{2}^{2}-{{z}_{1}}{{z}_{2}}=0\Leftrightarrow {{\left( \frac{{{z}_{1}}}{{{z}_{2}}} \right)}^{2}}-\frac{{{z}_{1}}}{{{z}_{2}}}+1=0\) \( \Leftrightarrow \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{1\pm \sqrt{3}i}{2}\Rightarrow \left| \frac{{{z}_{1}}}{{{z}_{2}}} \right|=1\Rightarrow \left| {{z}_{1}} \right|=\left| {{z}_{2}} \right| \)
Vậy OA = OB.
Mặt khác: \( \left| {{z}_{1}}-{{z}_{2}} \right|=\left| \frac{1\pm \sqrt{3}i}{2}{{z}_{2}}-{{z}_{2}} \right|=\left| {{z}_{2}} \right|\Rightarrow AB=OB \)
Vậy tam giác OAB đều.
Các bài toán liên quan
Các bài toán mới!
Thông Tin Hỗ Trợ Thêm!
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!