Giải phương trình: \( {{\sin }^{8}}x+{{\cos }^{8}}x=\frac{17}{16}{{\cos }^{2}}2x \) (*)
Hướng dẫn giải:
Ta có: \( {{\sin }^{8}}x+{{\cos }^{8}}x={{({{\sin }^{4}}x+{{\cos }^{4}}x)}^{2}}-2{{\sin }^{4}}x{{\cos }^{4}}x \)
\( ={{\left[ {{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}xco{{s}^{2}}x \right]}^{2}}-\frac{1}{8}{{\sin }^{4}}2x={{\left( 1-\frac{1}{2}{{\sin }^{2}}2x \right)}^{2}}-\frac{1}{8}{{\sin }^{4}}2x \)
\( =1-{{\sin }^{2}}2x+\frac{1}{8}{{\sin }^{4}}2x \).
Do đó: (*) \( \Leftrightarrow 6\left( 1-{{\sin }^{2}}2x+\frac{1}{8}{{\sin }^{4}}2x \right)=17(1-{{\sin }^{2}}2x) \)
\( \Leftrightarrow 2{{\sin }^{4}}2x+{{\sin }^{2}}2x-1=0\Leftrightarrow \left[ \begin{align} & {{\sin }^{2}}2x=-1\text{ }(\ell ) \\ & {{\sin }^{2}}2x=\frac{1}{2}\text{ }(n) \\ \end{align} \right. \)
\( \Leftrightarrow \frac{1}{2}(1-\cos 4x)=\frac{1}{2}\Leftrightarrow \cos 4x=0\Leftrightarrow x=\frac{\pi }{8}+\frac{k\pi }{4},\text{ }k\in \mathbb{Z} \).
Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Toán - Lý - Hóa từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!