Tìm a để hai phương trình sau tương đương: 2cosx.cos2x=1+cos2x+cos3x

Tìm a để hai phương trình sau tương đương:

\( 2\cos x.\cos 2x=1+\cos 2x+\cos 3x \)                    (1)

 \( 4{{\cos }^{2}}x-cos3x=a\cos x+(4-a)(1+\cos 2x) \)   (2)

Hướng dẫn giải:

Ta có:  \( (1)\Leftrightarrow \cos 3x+\cos x=1+\cos 2x+\cos 3x \)

 \( \Leftrightarrow \cos x=1+(2{{\cos }^{2}}x-1)\Leftrightarrow \cos x(1-2\cos x)=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & \cos x=0 \\  & \cos x=\frac{1}{2} \\ \end{align} \right. \).

Ta có:  \( (2)\Leftrightarrow 4{{\cos }^{2}}x-(4{{\cos }^{3}}x-3\cos x)=a\cos x+(4-a).2{{\cos }^{2}}x \)

 \( \Leftrightarrow 4{{\cos }^{3}}x+(4-2a)co{{s}^{2}}x(a-3)cosx=0 \)

 \( \Leftrightarrow \left[ \begin{align} & \cos x=0 \\  & 4{{\cos }^{2}}x+2(2-a)\cos x+a-3=0 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & \cos x=0 \\  & \left( \cos x-\frac{1}{2} \right)[2\cos x+3-a]=0 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align}  & \cos x=0 \\  & \cos x=\frac{1}{2} \\  & \cos x=\frac{a-3}{2} \\ \end{align} \right. \).

Vậy yêu cầu bài toán  \( \Leftrightarrow \left[ \begin{align}  & \frac{a-3}{2}=0 \\  & \frac{a-3}{2}=\frac{1}{2} \\  & \frac{a-3}{2}<-1\vee \frac{a-3}{2}>1 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align} & a=3 \\  & a=4 \\  & a<1\vee a>5 \\ \end{align} \right. \).

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *