Cho phương trình: cos4x+6sinxcosx=m

Cho phương trình: \( \cos 4x+6\sin x\cos x=m \)   (1)

a) Giải (1) khi \( m=1 \).

b) Tìm m để (1) có hai nghiệm phân biệt trên \( \left[ 0;\frac{\pi }{4} \right] \).

Hướng dẫn giải:

Ta có:  \( (1)\Leftrightarrow 1-2{{\sin }^{2}}2x+3\sin 2x=m \)

Đặt  \( t=\sin 2x \) (điều kiện:  \( \left| t \right|\le 1 \)).

Khi đó, phương trình thành:  \( 2{{t}^{2}}-3t+m-1=0 \)  (2)

a) Khi \( m=1 \) thì (2) thành: \( 2{{t}^{2}}-3t=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & t=0\text{ }(n) \\ & t=\frac{3}{2}\text{ }(\ell ) \\ \end{align} \right.\Leftrightarrow \sin 2x=0\Leftrightarrow x=\frac{k\pi }{2} \).

b) Khi \( x\in \left[ 0;\frac{\pi }{4} \right] \) thì \( \sin 2x=t\in [0;1] \).

Nhận thấy rằng mỗi t tìm được trên  \( [0;1] \) ta chỉ tìm được duy nhất một  \( x\in \left[ 0;\frac{\pi }{4} \right] \).

Ta có:  \( (2)\Leftrightarrow -2{{t}^{2}}+3t+1=m \).

Xét  \( y=-2{{t}^{2}}+3t+1 \) trên  \( [0;1] \).

Ta có:  \( {y}’=-4t+3 \).

Bảng biến thiên:

Yêu cầu bài toán  \( \Leftrightarrow (d):y=m \)cắt tại hai điểm phân biệt trên  \( [0;1] \)

 \( \Leftrightarrow 2\le m<\frac{17}{8} \).

Cách khác: Đặt  \( f(x)=2{{t}^{2}}-3t+m-1 \). Vì  \( a=2>0 \), nên ta có:

Yêu cầu bài toán  \( \Leftrightarrow \left\{ \begin{align}& \Delta =17-8m>0 \\ & f(0)=m-1\ge 0 \\  & f(1)=m-2\ge 0 \\  & 0\le \frac{S}{2}=\frac{3}{4}\le 1 \\ \end{align} \right.\Leftrightarrow 2\le m<\frac{17}{8} \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *