Đường thẳng y=m^2 cắt đồ thị hàm số y=x^4−x^2−10 tại hai điểm phân biệt A, B sao cho tam giác OAB vuông (O là gốc tọa độ)

Đường thẳng \( y={{m}^{2}} \) cắt đồ thị hàm số  \( y={{x}^{4}}-{{x}^{2}}-10 \) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông (O là gốc tọa độ). Mệnh đề nào sau đây đúng?

A. \( {{m}^{2}}\in \left( 5;7 \right) \)

B.  \( {{m}^{2}}\in \left( 3;5 \right) \)

C.  \( {{m}^{2}}\in \left( 1;3 \right) \)       

D.  \( {{m}^{2}}\in \left( 0;1 \right) \)

Hướng dẫn giải:

Đáp án C.

 \( {y}’=4{{x}^{3}}-2x=2x\left( 2{{x}^{2}}-1 \right) \);

 \( {y}’=0\Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=\pm \frac{\sqrt{2}}{2} \\ \end{align} \right. \)

Bảng biến thiên:

Dựa vào bảng biến thiên, ta thấy đường thẳng  \( y={{m}^{2}}\ge 0 \) luôn phía trên trục hoành nên nó luôn cắt đồ thị hàm số tại hai điểm phân biệt A, B.

Gọi \( A\left( \sqrt{a};{{m}^{2}} \right)\) và  \( B\left( -\sqrt{a};{{m}^{2}} \right) \) là giao điểm của hai đồ thị đã cho, với a > 0.

Ta có:

+  \( A\in \left( C \right)\Leftrightarrow {{a}^{2}}-a-10={{m}^{2}} \) (1)

+ Tam giác OAB cân tại O nên tam giác OAB vuông tại O  \( \Leftrightarrow \overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow {{m}^{4}}=a  \) (2)

Từ (1) và (2), ta có:  \( {{m}^{8}}-{{m}^{4}}-{{m}^{2}}-10=0\Leftrightarrow {{t}^{4}}-{{t}^{2}}-t-10=0 \) với  \( t={{m}^{2}}>0 \).

 \( \Leftrightarrow \left( t-2 \right)\left( {{t}^{3}}+2{{t}^{2}}+3t+5 \right)=0 \) \( \Leftrightarrow t=2\Leftrightarrow {{m}^{2}}=2\in \left( 1;3 \right) \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *