(Đề Tham Khảo – 2018) Cho tứ diện đều ABCD có cạnh bằng 4. Tính diện tích xung quanh \( {{S}_{xq}} \) của hình trụ có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD.
A. \({{S}_{xq}}=8\sqrt{3}\pi \).
B. \({{S}_{xq}}=8\sqrt{2}\pi \).
C. \({{S}_{xq}}=\frac{16\sqrt{3}\pi }{3}\).
D. \({{S}_{xq}}=\frac{16\sqrt{2}\pi }{3}\).
Hướng dẫn giải:
Chọn D
Bán kính đường tròn đáy hình trụ bằng một phần ba đường cao tam giác BCD nên \( r=\frac{1}{3}.\frac{4\sqrt{3}}{2}=\frac{2\sqrt{3}}{3} \).
Chiều cao hình trụ bằng chiều cao hình chóp là: \( h=\sqrt{{{4}^{2}}-{{\left( \frac{2}{3}.\frac{4\sqrt{3}}{2} \right)}^{2}}}=\sqrt{16-\frac{16.3}{9}}=\frac{4\sqrt{2}}{\sqrt{3}} \).
Vậy \( {{S}_{xq}}=2\pi rh=2\pi .\frac{2\sqrt{3}}{3}.\frac{4\sqrt{2}}{\sqrt{3}}=\frac{16\sqrt{2}\pi }{3} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Dạy kèm môn Toán Cao Cấp - Xác suất thống kê
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
No comment yet, add your voice below!