cho mặt cầu (S):x2+y2+z2=3. Một mặt phẳng (α) tiếp xúc với mặt cầu (S) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C thỏa mãn OA^2+OB^2+OC^2=27. Diện tích tam giác ABC bằng

Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu  \( (S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=3 \). Một mặt phẳng  \( (\alpha ) \) tiếp xúc với mặt cầu (S) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C thỏa mãn  \( O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=27 \). Diện tích tam giác ABC bằng

A. \( \frac{3\sqrt{3}}{2} \)

B.  \( \frac{9\sqrt{3}}{2} \)       

C.  \( 3\sqrt{3} \)              

D.  \( 9\sqrt{3} \)

Hướng dẫn giải:

Chọn B

Gọi H(a;b;c) là tiếp điểm của mặt phẳng  \( (\alpha ) \) và mặt cầu (S). Từ giả thiết ta có a, b, c là các số dương.

Mặt khác,  \( H\in (S) \) nên  \( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}=3 \) hay  \( O{{H}^{2}}=3\Leftrightarrow OH=\sqrt{3} \)  (1)

Mặt phẳng  \( (\alpha ) \) đi qua điểm H và vuông góc với đường thẳng OH nên nhận  \( \overrightarrow{OH}=(a;b;c) \) làm vectơ pháp tuyến.

Do đó, mặt phẳng  \( (\alpha ) \) có phương trình là:

 \( a(x-a)+b(y-b)+c(z-c)=0\Leftrightarrow ax+by+cz-({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=0 \)

 \( \Leftrightarrow ax+by+cz-3=0 \).

Suy ra:  \( A\left( \frac{3}{a};0;0 \right),\text{ }B\left( 0;\frac{3}{b};0 \right),\text{ }C\left( 0;0;\frac{3}{c} \right) \).

Theo đề:  \( O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=27\Leftrightarrow \frac{9}{{{a}^{2}}}+\frac{9}{{{b}^{2}}}+\frac{9}{{{c}^{2}}}=27\Leftrightarrow \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}=3 \)   (2)

Từ (1) và (2), ta có:  \( \left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}} \right)=9 \).

Mặt khác, ta có:  \( \left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}} \right)\ge 9 \) và dấu “=” xảy ra khi  \( a=b=c=1 \).

Suy ra,  \( OA=OB=OC=3 \) và  \( {{V}_{O.ABC}}=\frac{OA.OB.OC}{6}=\frac{9}{2} \).

Lúc đó:  \( {{S}_{\Delta ABC}}=\frac{3{{V}_{O.ABC}}}{OH}=\frac{9\sqrt{3}}{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *