Cho hàm số y=x^3−(2m+1)x^2+(m+1)x+m−1. Có bao nhiêu giá trị của số tự nhiên m<20 để đồ thị hàm số có hai điểm cực trị nằm về hai phía trục hoành

Cho hàm số \( y={{x}^{3}}-\left( 2m+1 \right){{x}^{2}}+\left( m+1 \right)x+m-1 \). Có bao nhiêu giá trị của số tự nhiên  \( m<20 \) để đồ thị hàm số có hai điểm cực trị nằm về hai phía trục hoành?

A. 18

B. 19

C. 21                                

D. 20

Hướng dẫn giải:

Đáp án B.

Ta có:  \( y=\left( x-1 \right)\left( {{x}^{2}}-2mx+1-m \right) \)

Hàm số có hai điểm cực trị nằm về hai phía trục hoành khi và chỉ khi đồ thị y cắt trục hoành tại ba điểm phân biệt

 \( \Leftrightarrow \left( x-1 \right)\left( {{x}^{2}}-2mx+1-m \right)=0 \) có ba nghiệm phân biệt.

 \( \Leftrightarrow {{x}^{2}}-2mx+1-m=0 \) có hai nghiệm phân biệt khác 1.

\(\Leftrightarrow \left\{ \begin{align}  & {{m}^{2}}+m-1>0 \\  & 2-3m\ne 0 \\ \end{align} \right.\)\(\Leftrightarrow \left\{ \begin{align} & m<\frac{-1-\sqrt{5}}{2}\vee m>\frac{-1+\sqrt{5}}{2} \\  & m\ne \frac{2}{3} \\ \end{align} \right.\)

+ Do  \( m\in \mathbb{N},m<20 \) nên  \( 1\le m<20 \).

Vậy có 19 số tự nhiên thỏa mãn bài toán.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *