Cho hai hàm số f(x)=x+msinx và g(x)=(m−3)x−(2m+1)cosx. Tất cả các giá trị của m làm cho hàm số f(x) đồng biến trên R và g(x) nghịch biến trên R

Cho hai hàm số \(f\left( x \right)=x+msinx\) và \(g\left( x \right)=\left( m-3 \right)x-\left( 2m+1 \right)cosx\). Tất cả các giá trị của m làm cho hàm số f(x) đồng biến trên R và g(x) nghịch biến trên R là:

A. \(m=-1\)

B. \(m=0\)

C. \(-1\le m\le 0\)           

D. \(-1\le m\le \frac{2}{3}\)

Hướng dẫn giải

Đáp án D.

Điều kiện bài toán tương đương: \(\left\{ \begin{align}& {f}'(x)=1+m\cos x\ge 0,\forall x\in \mathbb{R} \\ & {g}'(x)=m-3+(2m+1)\sin x\le 0,\forall x\in \mathbb{R} \\\end{align} \right.\)

\(\Leftrightarrow \left\{ \begin{align}& h(t)=mt+1\ge 0,\forall t=\cos x\in \left[ -1;1 \right] \\ & l(t)=(2m+1)t+m-3,\forall t=\sin x\in \left[ -1;1 \right] \\\end{align} \right.\)

\( \Leftrightarrow \left\{ \begin{align} & h(-1)\ge 0 \\& h(1)\ge 0 \\ & l(-1)\le 0 \\ & l(1)\le 0 \\\end{align} \right. \)\( \Leftrightarrow \left\{ \begin{align}& -m+1\ge 0 \\& m+1\ge 0 \\ & -m-4\le 0 \\& 3m-2\le 0 \\\end{align} \right. \)\( \Leftrightarrow \left\{ \begin{align} & m\le 1 \\& m\ge -1 \\& m\ge -4 \\& m\le \frac{2}{3} \\\end{align} \right. \) \( \Leftrightarrow -1\le m\le \frac{2}{3} \)

Chú ý: Trong bài toán trên ta đã dùng tính chất dấu của nhị thức bậc nhất như sau:

Cho nhị thức bậc nhất  \( f(x)=ax+b \), khi đó:

+ \( f(x)\ge 0,\forall x\in \left[ \alpha ;\beta  \right]\Leftrightarrow \left\{ \begin{align}& f(\alpha )\ge 0 \\& f(\beta )\ge 0 \\\end{align} \right. \)

+ \( f(x)\le 0,\forall x\in \left[ \alpha ;\beta  \right]\Leftrightarrow \left\{ \begin{align}& f(\alpha )\le 0 \\& f(\beta )\le 0 \\\end{align} \right. \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *