cho A(2;0;0), M(1;1;1). Mặt phẳng (P) thay đổi qua AM và cắt các tia Oy, Oz lần lượt tại B, C. Khi mặt phẳng (P) thay đổi thì diện tích tam giác ABC đạt giá trị nhỏ nhất bằng bao nhiêu

Trong không gian với hệ trục tọa độ Oxyz, cho A(2;0;0), M(1;1;1). Mặt phẳng (P) thay đổi qua AM và cắt các tia Oy, Oz lần lượt tại B, C. Khi mặt phẳng (P) thay đổi thì diện tích tam giác ABC đạt giá trị nhỏ nhất bằng bao nhiêu?

A. \( 5\sqrt{6} \)

B.  \( 4\sqrt{6} \)                       

C.  \( 3\sqrt{6} \)              

D.  \( 2\sqrt{6} \)

Hướng dẫn giải:

Chọn B

Đặt B(0;b;0), C(0;0;c), với  \( b,c>0 \).

Phương trình của mặt phẳng (P) là:  \( \frac{x}{2}+\frac{y}{b}+\frac{z}{c}=1 \).

 \( M\in (P)\Leftrightarrow \frac{1}{2}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow \frac{1}{b}+\frac{1}{c}=\frac{1}{2} \).

Suy ra:  \( \frac{1}{2}=\frac{1}{b}+\frac{1}{c}\ge \frac{2}{\sqrt{bc}}\Rightarrow bc\ge 16 \).

 \( {{S}_{\Delta ABC}}=\frac{1}{2}\left| \left[ \overrightarrow{AB},\overrightarrow{AC} \right] \right|=\frac{1}{2}\sqrt{{{b}^{2}}{{c}^{2}}+4{{b}^{2}}+4{{c}^{2}}}\ge \frac{1}{2}\sqrt{{{b}^{2}}{{c}^{2}}+8bc}=\frac{1}{2}\sqrt{{{16}^{2}}+8.16}=4\sqrt{6} \).

Vậy  \( \min {{S}_{\Delta ABC}}=4\sqrt{6}\Leftrightarrow b=c=4 \)

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *