Mặt phẳng (P) đi qua điểm M(1;1;1) cắt các tia Ox, Oy, Oz lần lượt là tại A(a;0;0), B(0;b;0), C(0;0;c) sao cho thể tích khối tứ diện OABC nhỏ nhất. Khi đó \( a+2b+3c \) bằng
A. 12
B. 21
C. 15
D. 18
Hướng dẫn giải:
Chọn D
Từ giả thiết ta có: \( a>0,b>0,c>0 \) và thể tích khối tứ diện OABC là: \( {{V}_{OABC}}=\frac{1}{6}abc \).
Ta có phương trình đoạn chắn mặt phẳng (P) có dạng \( \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \).
Mà \( M\in (P)\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1 \).
Áp dụng bất đẳng thức Cauchy cho ba số dương, ta có: \( 1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge 3\sqrt[3]{\frac{1}{abc}}\Rightarrow abc\ge 27 \).
Do đó, \( {{V}_{OABC}}=\frac{1}{6}abc\ge \frac{9}{2} \). Đẳng thức xảy ra khi và chỉ khi a=b=c=3.
Vậy \( \min {{V}_{OABC}}=\frac{9}{2}\Leftrightarrow a=b=c=3\Rightarrow a+2b+3c=18 \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!