cho mặt cầu \( {{(x-3)}^{2}}+{{(y-1)}^{2}}+{{z}^{2}}=4 \) và đường thẳng  \( d:\left\{ \begin{align}  & x=1+2t \\  & y=-1+t \\  & z=-t \\ \end{align} \right.,\text{ }t\in \mathbb{R} \). Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có phương trình là

Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \( {{(x-3)}^{2}}+{{(y-1)}^{2}}+{{z}^{2}}=4 \) và đường thẳng  \( d:\left\{ \begin{align}  & x=1+2t \\  & y=-1+t \\  & z=-t \\ \end{align} \right.,\text{ }t\in \mathbb{R} \). Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có phương trình là:

A. \( y+z+1=0 \)

B.  \( x+3y+5z+2=0 \)   

C.  \( x-2y-3=0 \)             

D.  \( 3x-2y-4z-8=0 \)

Hướng dẫn giải:

Chọn A

Gọi H là hình chiếu vuông góc của tâm cầu I(3;1;0) lên d, từ đó ta tìm được H(3;0;-1).

Thấy  \( IH\le R  \) nên d cắt (S).

Vậy mặt phẳng cần tìm nhận  \( \overrightarrow{IH}=(0;-1;-1) \) làm vectơ pháp tuyến nên phương trình mặt phẳng là  \( y+z+1=0 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

 

cho mặt cầu (S):x2+y2+z2−2x−4y−6z−2=0 và mặt phẳng (α):4x+3y−12z+10=0. Lập phương trình mặt phẳng (β) thỏa mãn đồng thời các điều kiện: tiếp xúc với (S), song song với (α) và cắt trục Oz ở điểm có cao độ dương

Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \( (S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-6z-2=0 \) và mặt phẳng  \( (\alpha ):4x+3y-12z+10=0 \). Lập phương trình mặt phẳng  \( (\beta ) \) thỏa mãn đồng thời các điều kiện: tiếp xúc với (S), song song với \( (\alpha ) \) và cắt trục Oz ở điểm có cao độ dương.

A. \( 4x+3y-12z-78=0 \)

B. \( 4x+3y-12z-26=0 \)

C. \( 4x+3y-12z+78=0 \)

D. \( 4x+3y-12z+26=0 \)

Hướng dẫn giải:

Chọn C

Mặt cầu (S) có tâm I(1;2;3), bán kính  \( R=4 \).

Mặt phẳng  \( (\beta ) \) song song với  \( (\alpha ) \) nên có phương trình dạng  \( 4x+3y-12z+c=0\text{ }(c\ne 10) \).

 \( (\beta ) \) tiếp xúc với (S)  \( \Leftrightarrow d\left( I,(\beta ) \right)=R\Leftrightarrow \frac{\left| 4.1+3.2-12.3+c \right|}{\sqrt{{{4}^{2}}+{{3}^{2}}+{{12}^{2}}}}=4\Leftrightarrow \frac{\left| -26+c \right|}{13}=4 \)

 \( \Leftrightarrow \left[ \begin{align}  & -26+c=52 \\  & -26+c=-52 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & c=78 \\  & c=-26 \\ \end{align} \right. \).

+ Với  \( c=78 \) thì  \( (\beta ):4x+3y-12z+78=0 \). Mặt phẳng  \( (\beta ) \) cắt trục Oz ở điểm  \( M\left( 0;0;\frac{13}{2} \right) \)  có cao độ dương.

+ Với  \( c=-26 \) thì  \( (\beta ):4x+3y-12z-26=0 \). Mặt phẳng  \( (\beta ) \) cắt trục Oz ở điểm  \( M\left( 0;0;-\frac{13}{6} \right) \) có cao độ âm.

Vậy  \( (\beta ):4x+3y-12z+78=0 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;0), C(-2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là

Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;0), C(-2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

A. \( 4x-2y-z+4=0 \)

B.  \( 4x-2y+z+4=0 \)     

C.  \( 4x+2y+z-4=0 \)    

D.  \( 4x+2y-z+4=0 \)

 

Hướng dẫn giải:

Đáp án A.

Ta có:  \( \overrightarrow{AB}=(2;-3;-2) \),  \( \overrightarrow{AC}=(-2;-1;-1) \) nên  \( \left[ \overrightarrow{AB},\overrightarrow{AC} \right]=(1;6;-8) \).

Phương trình mặt phẳng (ABC) là:  \( x+6y-8z+10=0 \).

Phương trình mặt phẳng qua B và vuông góc với AC là:  \( 2x+y+z-2=0 \).

Phương trình mặt phẳng qua C và vuông góc với AB là:  \( 2x-3y-2z+6=0 \).

Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên  \( H\left( -\frac{22}{101};\frac{70}{101};\frac{176}{101} \right) \).

Mặt phẳng (P) đi qua A, H nên \({{\vec{n}}_{P}}\bot \overrightarrow{AH}=\left( -\frac{22}{101};-\frac{31}{101};-\frac{26}{101} \right)=-\frac{1}{101}(22;31;26)\).

Mặt phẳng  \( (P)\bot (ABC) \) nên  \( {{\vec{n}}_{P}}\bot {{\vec{n}}_{(ABC)}}=(1;6;-8) \).

Vậy  \( {{\vec{n}}_{P}}=\left[ {{{\vec{n}}}_{(ABC)}};{{{\vec{u}}}_{AH}} \right]=(404;-202;-101)=101(4;-2;-1) \)

Do đó, phương trình mặt phẳng (P) là:  \( 4x-2y-z+4=0 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!