(THPT QG – 2018 – 103) Xét các số phức z thỏa mãn \( (\bar{z}+2i)(z-2) \) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. \( 2\sqrt{2} \)
B. 4
C. \( \sqrt{2} \)
D. 2
Hướng dẫn giải:
Đáp án C.
Giả sử \( z=x+yi \), với \( x,y\in \mathbb{R} \).
Vì \( (\bar{z}+2i)(z-2)=\left[ x+(2-y)i \right]\left[ (x-2)+yi \right] \) \( =\left[ x(x-2)-y(2-y) \right]+\left[ xy+(x-2)(2-y) \right]i\)
là số thuần ảo nên có phần thực bằng không do đó \( x(x-2)-y(2-y)=0\Leftrightarrow {{(x-1)}^{2}}+{{(y-1)}^{2}}=2 \).
Suy ra tập hợp các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng \( \sqrt{2} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!