Một hình trụ tròn xoay có hai đáy là hai đường tròn (O, R) và (O’, R). Biết rằng tồn tại dây cung AB của đường tròn (O, R) sao cho tam giác O’AB đều và góc giữa hai mặt phẳng (O’AB) và mặt phẳng chứa đường tròn (O, R) bằng 60O. Tính diện tích xung quanh của hình trụ đã cho.
A. \( 4\pi {{R}^{2}} \)
B. \( 2\sqrt{3}\pi {{R}^{2}} \)
C. \( \frac{3\sqrt{7}}{7}\pi {{R}^{2}} \)
D. \( \frac{6\sqrt{7}}{7}\pi {{R}^{2}} \)
Hướng dẫn giải:
Đáp án D.
Gọi K là trung điểm AB, đặt AB = 2a.
Ta có: \(\left\{ \begin{align} & AB\bot OK \\ & AB\bot OO’ \\ \end{align} \right.\Rightarrow \widehat{OKO’}={{60}^{O}}\)
\(\Rightarrow O’K=2OK\Rightarrow O'{{K}^{2}}=4O{{K}^{2}}\) \( \Rightarrow 3{{a}^{2}}=4\left( {{R}^{2}}-{{a}^{2}} \right)\Rightarrow {{a}^{2}}=\frac{4{{R}^{2}}}{7} \)
Mặt khác: \( OO{{‘}^{2}}=O'{{B}^{2}}-O{{B}^{2}}=4{{a}^{2}}-{{R}^{2}}=4.\frac{4{{R}^{2}}}{7}-{{R}^{2}}=\frac{9{{R}^{2}}}{7} \)
\( \Rightarrow O’O=\frac{6\sqrt{7}\pi R}{7} \)
Vậy diện tích xung quanh hình trụ đã cho là: \( {{S}_{xq}}=2\pi R\ell =\frac{6\sqrt{7}\pi {{R}^{2}}}{7} \)
Các bài toán liên quan
Bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Thông Tin Hỗ Trợ Thêm!
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!