Giải phương trình: tan^2x.cot^22x.cot3x=tan^2x−cot^22x+cot3x

Giải phương trình: \( {{\tan }^{2}}x.{{\cot }^{2}}2x.\cot 3x={{\tan }^{2}}x-{{\cot }^{2}}2x+\cot 3x \) (*)

Hướng dẫn giải:

Điều kiện:  \( \left\{ \begin{align}  & \cos x\ne 0 \\  & \sin 2x\ne 0 \\  & \sin 3x\ne 0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & \sin 2x\ne 0 \\  & \sin 3x\ne 0 \\ \end{align} \right. \).

Lúc đó: (*) \( \Leftrightarrow \cot 3x({{\tan }^{2}}x{{\cot }^{2}}2x-1)={{\tan }^{2}}x-{{\cot }^{2}}2x \)

 \( \Leftrightarrow \cot 3x\left[ \left( \frac{1-\cos 2x}{1+\cos 2x} \right)\left( \frac{1+\cos 4x}{1-\cos 4x} \right)-1 \right]=\frac{1-\cos 2x}{1+\cos 2x}-\frac{1+\cos 4x}{1-\cos 4x} \)

 \( \Leftrightarrow \cot 3x\left[ (1-\cos 2x)(1+\cos 4x)-(1+\cos 2x)(1-\cos 4x) \right] \)

 \(       =(1-\cos 2x)(1-\cos 4x)-(1+\cos 4x)(1+\cos 2x) \)

 \( \Leftrightarrow \cot 3x(2\cos 4x-2\cos 2x)=-2(\cos 4x+\cos 2x) \)

 \( \Leftrightarrow \frac{\cos 3x}{\sin 3x}(-4\sin 3x\sin x)=-4\cos 3x\cos x\Leftrightarrow \cos 3x\sin x=\cos 3x\cos x \) (do  \( \sin 3x\ne 0 \))

 \( \Leftrightarrow \left[ \begin{align}  & \cos 3x=0 \\  & \sin x=\cos x \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & 3x=\frac{\pi }{2}+k\pi  \\  & \tan x=1 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{6}+\frac{k\pi }{3} \\  & x=\frac{\pi }{4}+h\pi  \\ \end{align} \right.,\text{ }(k,h\in \mathbb{Z}). \)

So sánh với điều kiện:  \( \sin 2x.\sin 3x\ne 0 \)

+ Khi  \( x=\frac{\pi }{6}+\frac{k\pi }{3} \) thì  \( \sin \left( \frac{\pi }{3}+\frac{k2\pi }{3} \right).\sin \left( \frac{\pi }{2}+k\pi  \right)\ne 0\Leftrightarrow \sin \left( \frac{1+2k}{3} \right)\pi \ne 0 \)

Luôn đúng  \( \forall k \) thỏa  \( 2k+1\ne 3m\text{ }(m\in \mathbb{Z}) \).

+ Khi  \( x=\frac{\pi }{4}+h\pi \)  thì  \( \sin \left( \frac{\pi }{2}+k2\pi  \right)\sin \left( \frac{3\pi }{4}+k3\pi  \right)=\pm \frac{\sqrt{2}}{2}\ne 0 \) luôn đúng.

Do đó: (*) \( \Leftrightarrow \left[ \begin{align}  & x=\frac{\pi }{6}+\frac{k\pi }{3},k\in \mathbb{Z}\wedge 2k\ne 3m-1\text{ }(m\in \mathbb{Z}) \\  & x=\frac{\pi }{4}+h\pi ,\text{ }h\in \mathbb{Z} \\ \end{align} \right. \).

Cách khác:

(*) \( \Leftrightarrow \cot 3x({{\tan }^{2}}x{{\cot }^{2}}2x-1)={{\tan }^{2}}x-{{\cot }^{2}}2x \)

 \( \Leftrightarrow \cot 3x=\frac{{{\tan }^{2}}x-{{\cot }^{2}}2x}{{{\tan }^{2}}x{{\cot }^{2}}2x-1}=\frac{{{\tan }^{2}}2x.{{\tan }^{2}}x-1}{{{\tan }^{2}}x-{{\tan }^{2}}2x} \)

 \( \Leftrightarrow \cot 3x=\frac{(1+\tan 2x.\tan x)(1-\tan 2x.\tan x)}{(\tan 2x-\tan x)(\tan 2x+\tan x)} \)

 \( \cot 3x=\cot x.\cot 3x\Leftrightarrow \cot 3x(\cot x-1)=0\Leftrightarrow \left[ \begin{align}  & \cot 3x=0 \\  & \cot x=1 \\ \end{align} \right. \).

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *