Giải phương trình: \( \frac{{{(1-\cos x)}^{2}}+{{(1+\cos x)}^{2}}}{4(1-\sin x)}-{{\tan }^{2}}x\sin x=\frac{1}{2}(1+\sin x)+{{\tan }^{2}}x \) (*)
Hướng dẫn giải:
Điều kiện: \( \left\{ \begin{align} & \cos x\ne 0 \\ & \sin x\ne 1 \\ \end{align} \right.\Leftrightarrow \cos x\ne 0 \).
Lúc đó: (*) \( \Leftrightarrow \frac{2(1+{{\cos }^{2}}x)}{4(1-\sin x)}-\frac{{{\sin }^{3}}x}{1-{{\sin }^{2}}x}=\frac{1}{2}(1+\sin x)+\frac{{{\sin }^{2}}x}{1-{{\sin }^{2}}x} \)
\( \Leftrightarrow (1+{{\cos }^{2}}x)(1+\sin x)-2{{\sin }^{3}}x=(1+\sin x)(1-{{\sin }^{2}}x)+2{{\sin }^{2}}x \)
\( \Leftrightarrow (1+\sin x)(1+{{\cos }^{2}}x)=(1+\sin x){{\cos }^{2}}x+2{{\sin }^{2}}x(1+\sin x) \)
\( \Leftrightarrow \left[ \begin{align} & 1+\sin x=0 \\ & 1+{{\cos }^{2}}x={{\cos }^{2}}x+2{{\sin }^{2}}x \\ \end{align} \right. \)\(\Leftrightarrow \left[ \begin{align} & \sin x=-1(\text{loại do }\cos x\ne 0) \\ & 1=1-\cos 2x \\ \end{align} \right.\Leftrightarrow \cos 2x=0\) (nhận do \( \cos x\ne 0 \))
\( \Leftrightarrow 2x=\frac{\pi }{2}+k\pi \Leftrightarrow x=\frac{\pi }{4}+\frac{k\pi }{2} \).
Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Toán - Lý - Hóa từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!