Giải phương trình: cos^4x+sin^4x+cos(x−π/4)sin(3x−π/4)−3/2=0

(KD – 2005) Giải phương trình: \( {{\cos }^{4}}x+si{{n}^{4}}x+cos\left( x-\frac{\pi }{4} \right)\sin \left( 3x-\frac{\pi }{4} \right)-\frac{3}{2}=0 \) (*)

Hướng dẫn giải:

Ta có: (*) \( \Leftrightarrow {{({{\sin }^{2}}x+co{{s}^{2}}x)}^{2}}-2{{\sin }^{2}}xco{{s}^{2}}x+\frac{1}{2}\left[ \sin \left( 4x-\frac{\pi }{2} \right)+\sin 2x \right]-\frac{3}{2}=0 \)

 \( \Leftrightarrow 1-\frac{1}{2}{{\sin }^{2}}2x+\frac{1}{2}[-\cos 4x+\sin 2x]-\frac{3}{2}=0 \)

 \( \Leftrightarrow -\frac{1}{2}{{\sin }^{2}}2x-\frac{1}{2}(1-2{{\sin }^{2}}2x)+\frac{1}{2}\sin 2x-\frac{1}{2}=0\Leftrightarrow {{\sin }^{2}}2x+sin2x-2=0 \)

 \( \Leftrightarrow \left[ \begin{align}  & \sin 2x=1\text{ }(n) \\  & \sin 2x=-2\text{ }(\ell ) \\ \end{align} \right.\Leftrightarrow 2x=\frac{\pi }{2}+k2\pi \Leftrightarrow x=\frac{\pi }{4}+k2\pi ,\text{ }k\in \mathbb{Z} \).

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *