Giải phương trình: (1−tanx)(1+sin2x)=1+tanx

Giải phương trình: \( (1-\tan x)(1+\sin 2x)=1+\tan x \)   (*)

Hướng dẫn giải:

Điều kiện:  \( \cos x\ne 0 \).

Đặt  \( t=\tan x \) thì (*) thành:

 \( (1-t)\left( 1+\frac{2t}{1+{{t}^{2}}} \right)=1+t\Leftrightarrow (1-t)\frac{{{(t+1)}^{2}}}{1+{{t}^{2}}}=1+t \)

 \( \Leftrightarrow (1+t)\left[ \frac{(1-t)(1+t)}{1+{{t}^{2}}}-1 \right]=0\Leftrightarrow \left[ \begin{align} & t=-1 \\  & \frac{(1-t)(1+t)}{1+{{t}^{2}}}=1 \\ \end{align} \right. \)

 \( \Leftrightarrow \left[ \begin{align} & t=-1 \\ & 1-{{t}^{2}}=1+{{t}^{2}} \\ \end{align} \right.\Leftrightarrow t=-1\vee t=0 \).

Do đó:  \( \left[ \begin{align}  & \tan x=-1 \\  & \tan x=0 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align}  & x=-\frac{\pi }{4}+k\pi  \\  & x=k\pi  \\ \end{align} \right.,\text{ }k\in \mathbb{Z} \).

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *