Cho số phức z thỏa mãn |z|=1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=|z+1|+∣z2−z+1∣

Cho số phức z thỏa mãn \( \left| z \right|=1 \). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức  \( P=\left| z+1 \right|+\left| {{z}^{2}}-z+1 \right| \). Tính M.m

A. \( \frac{13\sqrt{3}}{4} \)                                           

B.  \( \frac{39}{4} \)                 

C.  \( 3\sqrt{3} \)              

D.  \( \frac{13}{4} \)

Hướng dẫn giải:

Đáp án A.

Thay  \( \left| {{z}^{2}} \right|=1 \) vào P, ta có:

 \( P=\left| z+1 \right|+\left| {{z}^{2}}-z+1 \right|=\left| z+1 \right|+\left| {{z}^{2}}-z+{{\left| z \right|}^{2}} \right| \)

 \( =\left| z+1 \right|+\left| {{z}^{2}}-z+z.\bar{z} \right|=\left| z+1 \right|+\left| z \right|\left| z-1+\bar{z} \right|=\left| z+1 \right|+\left| z-1+\bar{z} \right| \)

Mặt khác,  \( {{\left| z+1 \right|}^{2}}=(z+1)(\bar{z}+1)=2+z+\bar{z} \).

Đặt  \( t=z+\bar{z}\) do  \( \left| z \right|=1 \)  nên điều kiện \(t\in \left[ -2;2 \right]\).

Suy ra:  \( P=\sqrt{t+2}+\left| t-1 \right| \).

Xét hàm số  \( f(t)=\sqrt{t+2}+\left| t-1 \right| \) với  \( t\in \left[ -2;2 \right] \).

 \( {f}'(t)=\frac{1}{2\sqrt{t+2}}+1 \) với  \( t>1 \). Suy ra  \( {f}'(t)>0 \) với  \( t>1 \) .

\({f}'(t)=\frac{1}{2\sqrt{t+2}}-1\) với \(t<1\). Suy ra  \( {f}'(t)=0\Leftrightarrow t=-\frac{7}{4} \).

Ta có bảng biến thiên:

Từ bảng biến thiên suy ra:  \( M=\frac{13}{4} \) tại  \( t=-\frac{7}{4} \) và  \( m=\sqrt{3} \) tại t = 2.

Vậy,  \( M.m=\frac{13\sqrt{3}}{4} \).

 

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *