cho mặt phẳng (P):x−y+2=0 và hai điểm A(1;2;3), B(1;0;1). Điểm C(a;b;−2)∈(P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a+b

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \( (P):x-y+2=0 \) và hai điểm A(1;2;3), B(1;0;1). Điểm  \( C(a;b;-2)\in (P) \) sao cho tam giác ABC có diện tích nhỏ nhất. Tính  \( a+b  \).

A. 0

B. -3                                 

C. 1                                   

D. 2

Hướng dẫn giải:

Chọn A

Ta có:  \( C(a;b;-2)\in (P)\Rightarrow a-b+2=0\Rightarrow b=a+2\Rightarrow C(a;a+2;-2) \).

 \( \overrightarrow{AB}=(0;-2;-2),\overrightarrow{AC}=(a-1;a;-5)\Rightarrow \left[ \overrightarrow{AB},\overrightarrow{AC} \right]=(10+2a;-2a+2;2a-2) \).

 \( {{S}_{\Delta ABC}}=\frac{1}{2}\left| \left[ \overrightarrow{AB},\overrightarrow{AC} \right] \right|=\frac{\sqrt{{{(2a+10)}^{2}}+2{{(2a-2)}^{2}}}}{2}=\frac{\sqrt{12{{a}^{2}}+24a+108}}{2} \)

 \( =\sqrt{3({{a}^{2}}+2a+9)}=\sqrt{3{{(a+1)}^{2}}+24}\ge 2\sqrt{6},\text{ }\forall a  \).

Do đó  \( \min {{S}_{\Delta ABC}}=2\sqrt{6} \) khi  \( a=-1 \). Khi đó, ta có  \( C(-1;1;-2)\Rightarrow a+b=0 \)

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *