Cho hình trụ có thiết diện qua trục là hình vuông ABCD cạnh bằng 2√3cm với AB là đường kính của đường tròn đáy tâm O

Cho hình trụ có thiết diện qua trục là hình vuông ABCD cạnh bằng \( 2\sqrt{3}\,\,cm \) với AB là đường kính của đường tròn đáy tâm O. Gọi M là điểm thuộc cung  \( \overset\frown{AB} \) của đường tròn đáy sao cho  \( \widehat{ABM}=60{}^\circ \) . Thể tích của khối tứ diện ACDM là:

A. \( V=3\,\,c{{m}^{3}} \).

B.  \( V=4\,\,c{{m}^{3}} \).

C.  \( V=6\,\,c{{m}^{3}} \).    

D.  \( V=7\,\,c{{m}^{3}} \).

Hướng dẫn giải:

Chọn A

Ta có:  \( \Delta MAB \) vuông tại M có  \( \widehat{B}=60{}^\circ  \) nên  \( MB=\sqrt{3},\,\,MA=3 \).

Gọi H là hình chiếu của M lên AB, suy ra  \( MH\bot (ACD) \) và  \( MH=\frac{MB.MA}{AB}=\frac{3}{2} \).

Vậy  \( {{V}_{M.ACD}}=\frac{1}{3}MH.{{S}_{ACD}}=\frac{1}{3}.\frac{3}{2}.6=3\,\,c{{m}^{3}} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *