Cho số phức z, w thỏa mãn \( \left| z-3\sqrt{2} \right|=\sqrt{2},\text{ }\left| w-4\sqrt{2}i \right|=2\sqrt{2} \). Biết rằng \( \left| z-w \right| \) đạt giá trị nhỏ nhất khi \( z={{z}_{0}},w={{w}_{0}} \). Tính \( \left| 3{{z}_{0}}-{{w}_{0}} \right| \).
A. \( 2\sqrt{2} \)
B. \( 4\sqrt{2} \)
C. 1
D. \( 6\sqrt{2} \)
Hướng dẫn giải:
Đáp án D.
Ta có:
+ \( \left| z-3\sqrt{2} \right|=\sqrt{2} \), suy ra tập hợp điểm biểu diễn M biểu diễn số phức z là đường tròn có tâm \( I\left( 3\sqrt{2};0 \right) \), bán kính \( r=\sqrt{2} \).
+ \( \left| w-4\sqrt{2}i \right|=2\sqrt{2} \), suy ra tập hợp điểm biểu diễn N biểu diễn số phức w là đường tròn có tâm \( J\left( 0;4\sqrt{2} \right) \), bán kính \( R=2\sqrt{2} \).
Ta có: \( \min \left| z-w \right|=M{{N}_{\min }} \).
+ \( IJ=5\sqrt{2};\text{ }IM=r=\sqrt{2};\text{ }NJ=R=2\sqrt{2} \).
Mặt khác, \( IM+MN+NJ\ge IJ\Rightarrow MN\ge IJ-IM-NJ \) hay \( MN\ge 5\sqrt{2}-\sqrt{2}-2\sqrt{2}=2\sqrt{2} \).
Suy ra \( M{{N}_{\min }}=2\sqrt{2} \) khi I, M, N, J thẳng hàng và M, N nằm giữa I, J (hình vẽ).
Cách 1:
Khi đó, ta có: \( \left| 3{{z}_{0}}-{{w}_{0}} \right|=\left| 3\overrightarrow{OM}-\overrightarrow{ON} \right| \) và \( IN=3\sqrt{2}\Rightarrow \overrightarrow{IM}=\frac{1}{5}\overrightarrow{IJ};\text{ }\overrightarrow{IN}=\frac{3}{5}\overrightarrow{IJ} \).
Mặt khác, \( \overrightarrow{ON}=\overrightarrow{OI}+\overrightarrow{IN}=\overrightarrow{OI}+\frac{3}{5}\overrightarrow{IJ} \); \( 3\overrightarrow{OM}=3\left( \overrightarrow{OI}+\overrightarrow{IM} \right)=3\left( \overrightarrow{OI}+\frac{1}{5}\overrightarrow{IJ} \right)=3\overrightarrow{OI}+\frac{3}{5}\overrightarrow{IJ} \).
Suy ra: \( \left| 3{{z}_{0}}-{{w}_{0}} \right|=\left| 3\overrightarrow{OM}-\overrightarrow{ON} \right|=\left| 3\overrightarrow{OI}+\frac{3}{5}\overrightarrow{IJ}-\left( \overrightarrow{OI}+\frac{3}{5}\overrightarrow{IJ} \right) \right|=\left| 2\overrightarrow{OI} \right|=6\sqrt{2} \).
Cách 2:
Ta có: \( \overrightarrow{IN}=3\overrightarrow{IM}\Rightarrow 3\overrightarrow{IM}-\overrightarrow{IN}=\overrightarrow{0} \)
Do đó: \( \left| 3{{z}_{0}}-{{w}_{0}} \right|=\left| 3\overrightarrow{OM}-\overrightarrow{ON} \right|=\left| 3\left( \overrightarrow{OI}+\overrightarrow{IM} \right)-\left( \overrightarrow{OI}+\overrightarrow{IN} \right) \right| \)
\( =\left| 2\overrightarrow{OI} \right|=2.OI=2.3\sqrt{2}=6\sqrt{2} \).
Cách 3:
+ \( \overrightarrow{IM}=\frac{IM}{IJ}\overrightarrow{IJ}\Leftrightarrow \overrightarrow{IM}=\frac{1}{5}\overrightarrow{IJ} \) \( \Leftrightarrow \left\{ \begin{align} & {{x}_{M}}=\frac{12\sqrt{2}}{5} \\ & {{y}_{M}}=\frac{4\sqrt{2}}{5} \\ \end{align} \right.\Rightarrow {{z}_{0}}=\frac{12\sqrt{2}}{5}+\frac{4\sqrt{2}}{5}I \)
+ \( \overrightarrow{IN}=\frac{IN}{IJ}\overrightarrow{IJ}\Leftrightarrow \overrightarrow{IN}=\frac{3}{5}\overrightarrow{IJ}\Leftrightarrow \left\{ \begin{align} & {{x}_{N}}=\frac{6\sqrt{2}}{5} \\ & {{y}_{N}}=\frac{12\sqrt{2}}{5} \\ \end{align} \right.\Rightarrow {{w}_{0}}=\frac{6\sqrt{2}}{5}+\frac{12\sqrt{2}}{5}I \)
Suy ra \( \left| 3{{z}_{0}}-{{w}_{0}} \right|=\left| 6\sqrt{2} \right|=6\sqrt{2} \).
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Hệ Thống Trung Tâm Nhân Tài Việt!
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh các lớp 10, 11, 12, LTDH
- Cơ sở 1: Khu đô thị Garden, Thị trấn Đức Tài, Huyện Đức Linh, Tỉnh Bình Thuận
- Cơ sở 2: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Cơ sở 3: số 33/66, hẻm 33, đường số 5, P. Bình Hưng Hòa, Quận Tân Bình, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!