Cho số phức z thỏa |z|=1. Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P=∣z^5+z¯^3+6z∣−2∣z^4+1∣. Tính M−m

Cho số phức z thỏa \( \left| z \right|=1 \). Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức  \( P=\left| {{z}^{5}}+{{{\bar{z}}}^{3}}+6z \right|-2\left| {{z}^{4}}+1 \right| \). Tính  \( M-m \).

A. \( M-m=1 \)

B.  \( M-m=2 \)                

C.  \( M-m=3 \)                

D.  \( M-m=4 \)

Hướng dẫn giải:

Chọn A

Vì  \( \left| z \right|=1 \) và  \( z.\bar{z}={{\left| z \right|}^{2}} \) nên ta có:  \( \bar{z}=\frac{1}{z} \).

Cách 1:

Từ đó:  \( P=\left| {{z}^{5}}+{{{\bar{z}}}^{3}}+6z \right|-2\left| {{z}^{4}}+1 \right|=\left| z \right|\left| {{z}^{4}}+{{{\bar{z}}}^{4}}+6 \right|-2\left| {{z}^{4}}+1 \right|=\left| {{z}^{4}}+{{{\bar{z}}}^{4}}+6 \right|-2\left| {{z}^{4}}+1 \right| \).

Đặt  \( {{z}^{4}}=x+iy\text{ }(x,y\in \mathbb{R}) \). Do  \( \left| z \right|=1 \) nên  \( \left| {{z}^{4}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}=1 \) và  \( -1\le x,y\le 1 \).

Khi đó:  \( P=\left| x+iy+x-iy+6 \right|-2\left| x+iy+1 \right|=\left| 2x+6 \right|-2\sqrt{{{(x+1)}^{2}}+{{y}^{2}}} \)

\( =2x+6-2\sqrt{2x+2}={{\left( \sqrt{2x+2}-1 \right)}^{2}}+3 \).

Do đó:  \( P\ge 3 \). Lại có  \( -1\le x\le 1\Rightarrow 0\le \sqrt{2x+2}\le 2\Rightarrow -1\le \sqrt{2x+2}-1\le 1\Rightarrow P\le 4 \).

Vậy  \( M=4 \) khi  \( {{z}^{4}}=\pm 1 \) và  \( m=3 \) khi  \( {{z}^{4}}=-\frac{1}{2}\pm \frac{\sqrt{3}}{2}I \).

Suy ra  \( M-m=1 \).

Cách 2:

Suy ra:  \( P=\left| {{z}^{5}}+\frac{1}{{{z}^{3}}}+6z \right|-2\left| {{z}^{4}}+1 \right|=\frac{1}{{{\left| z \right|}^{3}}}\left| {{z}^{8}}+1+6{{z}^{4}} \right|-2\left| {{z}^{4}}+1 \right|=\left| {{z}^{8}}+6{{z}^{4}}+1 \right|-2\left| {{z}^{4}}+1 \right| \).

Đặt  \( w={{z}^{4}}\Rightarrow \left| w \right|=1 \), ta được  \( P=\left| {{w}^{2}}+6w+1 \right|-\left| 2w+2 \right| \).

Gọi  \( w=x+yi \), vì  \( \left| w \right|=1\Leftrightarrow {{x}^{2}}+{{y}^{2}}=1\Rightarrow \left\{ \begin{align}  & \left| x \right|\le 1 \\  & \left| y \right|\le 1 \\ \end{align} \right. \).

\( P=\left| {{x}^{2}}+6x+1-{{y}^{2}}+2y(x+3)i \right|-2\left| x+1+yi \right|=\left| 2{{x}^{2}}+6x+2y(x+3)i \right|-2\left| x+1+yi \right| \)

\( =2\left| (x+3)(x+yi) \right|-2\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}=2\left| (x+3) \right|\left| x+yi \right|-2\sqrt{2x+2}=2(x+3)-2\sqrt{2x+2} \).

Xét hàm số  \( f(x)=2(x+3)-2\sqrt{2x+2} \) trên đoạn  \( \left[ -1;1 \right] \).

\( {f}'(x)=2-2.\frac{1}{\sqrt{2x+2}};{f}'(x)=0\Leftrightarrow 2-2.\frac{1}{\sqrt{2x+2}}=0\Leftrightarrow \sqrt{2x+2}=1\Leftrightarrow x=-\frac{1}{2} \).

Ta có: \(f(-1)=4;\text{ }f\left( -\frac{1}{2} \right)=3;\text{ }f(1)=4\).

Vậy  \( M=4,\text{ }m=3\Rightarrow M-m=1 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *