Cho số phức z thỏa mãn |z−2i|≤|z−4i| và |z−3−3i|=1. Giá trị lớn nhất của biểu thức P=|z−2| là

Cho số phức z thỏa mãn \( \left| z-2i \right|\le \left| z-4i \right| \) và  \( \left| z-3-3i \right|=1 \). Giá trị lớn nhất của biểu thức  \( P=\left| z-2 \right| \) là

A. \( \sqrt{13}+1 \)

B.  \( \sqrt{10}+1 \)         

C.  \( \sqrt{13} \)              

D.  \( \sqrt{10} \)

Hướng dẫn giải:

Chọn C

Gọi M(x;y) là điểm biểu diễn số phức z ta có:  \( \left| z-2i \right|\le \left| z-4i \right|\Leftrightarrow {{x}^{2}}+{{(y-2)}^{2}}\le {{x}^{2}}+{{(y-4)}^{2}} \)

\( \Leftrightarrow y\le 3;\text{ }\left| z-3-i \right|=1\Leftrightarrow \) điểm M nằm trên đường tròn tâm I(3;3) và bán kính bằng 1. Biểu thức  \( P=\left| z-2 \right|=AM \) trong đó A(2;0), theo hình vẽ thì giá trị lớn nhất của  \( P=\left| z-2 \right| \) đạt được khi M(4;3) nên  \( {{P}_{\max }}=\sqrt{{{(4-2)}^{2}}+{{(3-0)}^{2}}}=\sqrt{13} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *