Cho hai số phức z và w thỏa mãn z+2w=8−6i và |z−w|=4. Giá trị lớn nhất của biểu thức |z|+|w| bằng

Cho hai số phức z và w thỏa mãn \( z+2w=8-6i  \) và  \( \left| z-w \right|=4 \). Giá trị lớn nhất của biểu thức  \( \left| z \right|+\left| w \right| \) bằng

A. \( 4\sqrt{6} \)

B.  \( 2\sqrt{26} \)                     

C.  \( \sqrt{66} \)              

D.  \( 3\sqrt{6} \)

Hướng dẫn giải:

Đáp án C.

Giả sử M, N lần lượt là các điểm biểu diễn cho z và w. Suy ra:  \( \overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{OF}=2\overrightarrow{OI} \),  \( \left| z-w \right|=MN=4 \) và  \( OF=2OI=10 \).

Đặt  \( \left| z \right|=ON=\frac{a}{2};\text{ }\left| w \right|=OM=b  \). Dựng hình bình hành OMFE.

Ta có:  \( \left\{ \begin{align} & \frac{{{a}^{2}}+{{b}^{2}}}{2}-\frac{M{{E}^{2}}}{4}=25 \\  & \frac{{{b}^{2}}+M{{E}^{2}}}{2}-\frac{{{a}^{2}}}{4}=16 \\ \end{align} \right.\Rightarrow {{a}^{2}}+2{{b}^{2}}=\frac{264}{3} \)

 \( {{\left( \left| z \right|+\left| w \right| \right)}^{2}}={{\left( \frac{a}{2}+b \right)}^{2}}\le \left( {{a}^{2}}+2{{b}^{2}} \right)\left( \frac{1}{4}+\frac{1}{2} \right)=66 \).

Suy ra:  \( a+b\le \sqrt{66} \), dấu “=” xảy ra khi  \( a=b=\frac{2\sqrt{66}}{3} \).

Vậy  \( {{(a+b)}_{\max }}=\sqrt{66} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *