Giải hệ phương trình sau: \( \left\{ \begin{align}  & 2\left| x-1 \right|-\sqrt{y+2}=4 \\  & \left| x-1 \right|+3\sqrt{y+2}=9 \\ \end{align} \right. \)

Giải hệ phương trình sau: \( \left\{ \begin{align}  & 2\left| x-1 \right|-\sqrt{y+2}=4 \\  & \left| x-1 \right|+3\sqrt{y+2}=9 \\ \end{align} \right. \).

Hướng dẫn giải:

Điều kiện:  \( y\ge -2 \).

Ta có:  \( \left\{ \begin{align}  & 2\left| x-1 \right|-\sqrt{y+2}=4 \\  & \left| x-1 \right|+3\sqrt{y+2}=9 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & 2\left| x-1 \right|-\sqrt{y+2}=4 \\  & 2\left| x-1 \right|+6\sqrt{y+2}=18 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & 7\sqrt{y+2}=14 \\ & \left| x-1 \right|=9-3\sqrt{y+2} \\ \end{align} \right. \)

 \( \Leftrightarrow \left\{ \begin{align}  & \sqrt{y+2}=2 \\  & \left| x+1 \right|=3 \\ \end{align} \right. \) \(\Leftrightarrow \left\{\begin{matrix} y+2=4 \\ \left [ \begin{matrix} x-1=3 \\ x-1=-3 \end{matrix} \right. \end{matrix}\right. \) \(\Leftrightarrow \left\{\begin{matrix} y=2 \\ \left [ \begin{matrix} x=4 \\ x=-2 \end{matrix} \right. \end{matrix}\right. \)  (thỏa mãn).

Vậy hệ phương trình có nghiệm  \( (x;y)\in \left\{ (-2;2),(4;2) \right\} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Không tìm thấy bài viết nào.

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 5536128neb may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *