Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M và M’. Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn là N và N’

Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M và M’. Số phức \( z(4+3i) \) và số phức liên hợp của nó có điểm biểu diễn là N và N’. Biết rằng M, M’, N, N’ là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của  \( \left| z+4i-5 \right| \).

A. \( \frac{5}{\sqrt{34}} \)

B.  \( \frac{2}{\sqrt{5}} \)         

C.  \( \frac{\sqrt{2}}{2} \)

D.  \( \frac{4}{\sqrt{13}} \)

Hướng dẫn giải:

Đáp án C.

Gọi  \( z=x+yi  \), trong đó  \( x,y\in \mathbb{R} \). Khi đó, \(\bar{z}=x-yi\)

 \( \Rightarrow M(x;y),\text{ }{M}'(x;-y) \).

Ta đặt  \( w=z(4+3i)=(x+yi)(4+3i)=(4x-3y)+(3x+4y)I \)  \( \Rightarrow N(4x-3y;3x+4y) \).

Khi đó:  \( \bar{w}=\overline{z(4+3i)}=(4x-3y)-(3x+4y)i\Rightarrow {N}'(4x-3y;-3x-4y) \).

Ta có M và M’; N và N’ từng cặp đối xứng qua trục Ox.

Do đó, để chúng tạo thành một hình chữ nhật thì  \( {{y}_{M}}={{y}_{N}} \) hoặc  \( {{y}_{M}}={{y}_{{{N}’}}} \).

Suy ra:  \( y=3x+4y  \) hoặc  \( y=-3x-4y  \).

Vậy tập hợp các điểm M là hai đường thẳng  \( {{d}_{1}}:x+y=0 \) và  \( {{d}_{2}}:3x+5y=0 \).

Đặt  \( P=\left| z+4i-5 \right|=\sqrt{{{(x-5)}^{2}}+{{(y+4)}^{2}}} \). Ta có  \( P=MA  \) với A(5;-4).

 \( {{P}_{\min }}\Leftrightarrow M{{A}_{\min }}\Leftrightarrow MA={{d}_{(A,{{d}_{1}})}} \) hoặc  \( MA={{d}_{(A,{{d}_{2}})}} \).

Mà  \( {{d}_{(A,{{d}_{1}})}}=\frac{\sqrt{2}}{2},\text{ }{{d}_{(A,{{d}_{2}})}}=\frac{5}{\sqrt{34}} \).

Vậy  \( {{P}_{\min }}={{d}_{(A,{{d}_{1}})}}=\frac{\sqrt{2}}{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *