(THPTQG – 2018 – 104) Xét các số phức z thỏa mãn \( (\bar{z}-2i)(z+2) \) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng?
A. \( \sqrt{2} \)
B. 2
C. 4
D. \( 2\sqrt{2} \)
Hướng dẫn giải:
Đáp án A.
Gọi \( z=a+bi \) với \( a,b\in \mathbb{R} \).
Ta có: \( (\bar{z}-2i)(z+2)=(a-bi-2i)(a+bi+2) \) \( ={{a}^{2}}+2a+{{b}^{2}}+2b-2(a+b+2)i \)
Vì \( (\bar{z}-2i)(z+2) \) là số thuần ảo nên ta có \({{a}^{2}}+2a+{{b}^{2}}+2b=0\Leftrightarrow {{(a+1)}^{2}}+{{(b+1)}^{2}}=2\).
Trên mặt phẳng tọa độ Oxy, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính \(R=\sqrt{2}\).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!