Xác định tọa độ các đỉnh và độ dài các trục của các elip có phương trình sau:
a) \( \frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{4}=1 \)
b) \( {{x}^{2}}+4{{y}^{2}}=1 \)
Hướng dẫn giải:
a) Từ phương trình \( \frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{4}=1 \) ta có: \( a=4,\text{ }b=2 \).
Các đỉnh: \( {{A}_{1}}(-4;0),\text{ }{{A}_{2}}(4;0),\text{ }{{B}_{1}}(0;-2),\text{ }{{B}_{2}}(0;2) \).
Độ dài trục lớn: \( {{A}_{1}}{{A}_{2}}=2a=8,\text{ }{{B}_{1}}{{B}_{2}}=2b=4 \).
b) Ta có: \( {{x}^{2}}+4{{y}^{2}}=1\Leftrightarrow \frac{{{x}^{2}}}{1}+\frac{{{y}^{2}}}{\frac{1}{4}}=1 \): \( a=1,\text{ }b=\frac{1}{2} \).
Các đỉnh: \( {{A}_{1}}(-1;0),\text{ }{{A}_{2}}(1;0),\text{ }{{B}_{1}}\left( 0;-\frac{1}{2} \right),\text{ }{{B}_{2}}\left( 0;\frac{1}{2} \right) \).
Độ dài trục lớn: \( {{A}_{1}}{{A}_{2}}=2a=2,\text{ }{{B}_{1}}{{B}_{2}}=2b=1 \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!