Trong không gian với hệ trục tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình x^2+y^2+z^2−2(m+2)x+4my+19m−6=0 là phương trình mặt cầu

Trong không gian với hệ trục tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình \( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2(m+2)x+4my+19m-6=0 \) là phương trình mặt cầu.

A. \( 1<m<2 \)

B.  \( m<1\vee m>2 \)     

C.  \( -2\le m\le 1 \)           

D.  \( m<-2\vee m>1 \)

Hướng dẫn giải:

Đáp án B.

Điều kiện để phương trình  \( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2(m+2)x+4my+19m-6=0 \) là phương trình mặt cầu là:  \( {{(m+2)}^{2}}+4{{m}^{2}}-19m+6>0 \) \( \Leftrightarrow 5{{m}^{2}}-15m+10>0\Leftrightarrow m<1\vee m>2 \)

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *