Trong không gian với hệ trục tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình \( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2(m+2)x+4my+19m-6=0 \) là phương trình mặt cầu.
A. \( 1<m<2 \)
B. \( m<1\vee m>2 \)
C. \( -2\le m\le 1 \)
D. \( m<-2\vee m>1 \)
Hướng dẫn giải:
Đáp án B.
Điều kiện để phương trình \( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2(m+2)x+4my+19m-6=0 \) là phương trình mặt cầu là: \( {{(m+2)}^{2}}+4{{m}^{2}}-19m+6>0 \) \( \Leftrightarrow 5{{m}^{2}}-15m+10>0\Leftrightarrow m<1\vee m>2 \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!