Trong không gian với hệ trục tọa độ Oxyz, cho A(1;-1;3) và hai đường thẳng d1:(x−4)/1=(y+2)/4=(z−1)/−2, d2:(x−2)/1=(y+1)/−1=(z−1)/1. Phương trình đường thẳng qua A, vuông góc với d1 và cắt d2 là

Trong không gian với hệ trục tọa độ Oxyz, cho A(1;-1;3) và hai đường thẳng \( {{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2} \),  \( {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1} \). Phương trình đường thẳng qua A, vuông góc với d1 và cắt d2 là:

A. \( \frac{x-1}{2}=\frac{y+1}{1}=\frac{z-3}{3} \)

B.  \( \frac{x-1}{4}=\frac{y+1}{1}=\frac{z-3}{4} \)

C. \( \frac{x-1}{-1}=\frac{y+1}{2}=\frac{z-3}{3} \)

D.  \( \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{-1} \)

Hướng dẫn giải:

Đáp án D.

Gọi d là đường thẳng qua A và d cắt d2 tại K.

Khi đó  \( K(2+t;-1-t;1+t) \).

Ta có:  \( \overrightarrow{AK}=(1+t;-t;t-2) \).

Đường thẳng  \( AK\bot {{d}_{1}}\Leftrightarrow \overrightarrow{AK}.{{\vec{u}}_{1}}=0 \), với  \( {{\vec{u}}_{1}}=(1;4;-2) \) là một vectơ chỉ phương của d1.

Do đó:  \( 1+t-4t-2t+4=0\Leftrightarrow t=1 \), suy ra  \( \overrightarrow{AK}=(2;-1;-1) \).

Vậy phương trình đường thẳng  \( d:\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{-1} \)

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *