Trong không gian Oxyz, cho hai điểm A(2;2;1), B(−8/3;4/3;8/3). Đường thẳng qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB) có phương trình là

(Đề tham khảo – 2018) Trong không gian Oxyz, cho hai điểm A(2;2;1), \( B\left( -\frac{8}{3};\frac{4}{3};\frac{8}{3} \right) \). Đường thẳng qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB) có phương trình là:

A. \( \frac{x+\frac{2}{9}}{1}=\frac{y-\frac{2}{9}}{-2}=\frac{z+\frac{5}{9}}{2} \)

B.  \( \frac{x+1}{1}=\frac{y-8}{-2}=\frac{z-4}{2} \)

C. \( \frac{x+\frac{1}{3}}{1}=\frac{y-\frac{5}{3}}{-2}=\frac{z-\frac{11}{6}}{2} \)

D.  \( \frac{x+1}{1}=\frac{y-3}{-2}=\frac{z+1}{2} \)

Hướng dẫn giải:

Đáp án D.

Ta có:  \( \left[ \overrightarrow{OA},\overrightarrow{OB} \right]=(4;-8;8) \).

Gọi d là đường thẳng thỏa mãn khi đó d có VTCP  \( \vec{u}=(1;-2;2) \).

Ta có OA = 3, OB = 4, AB = 5.

Gọi I(x;y;z) là tâm đường tròn nội tiếp tam giác OAB.

Áp dụng hệ thức:  \( OB.\overrightarrow{IA}+OA.\overrightarrow{IB}+AB.\overrightarrow{IO}=\vec{0} \)

 \( \Leftrightarrow 4.(\overrightarrow{OA}-\overrightarrow{OI})+3.(\overrightarrow{OB}-\overrightarrow{OI})+5.\overrightarrow{IO}=\vec{0} \)

 \( \Leftrightarrow \overrightarrow{OI}=\frac{1}{12}\left( 4\overrightarrow{OA}+3\overrightarrow{OB} \right)\Rightarrow I(0;1;1) \)

Suy ra  \( d:\left\{ \begin{align}  & x=t \\  & y=1-2t \\  & z=1+2t \\ \end{align} \right. \) cho  \( t=-1\Rightarrow d  \) đi qua điểm  \( M(-1;3;-1) \).

Do đó d đi qua  \( M(-1;3;-1) \) có VTCP  \( \vec{u}=(1;-2;2) \) nên đường thẳng có phương trình  \( \frac{x+1}{1}=\frac{y-3}{-2}=\frac{z+1}{2} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *