Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:(x−1)/1=(y−2)/2=(z−3)/3. Đường thẳng đi qua M, vuông góc với d và cắt Oz có phương trình là

Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng \( d:\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} \). Đường thẳng đi qua M, vuông góc với d và cắt Oz có phương trình là:

A. \( \left\{ \begin{align} & x=1-3t \\  & y=0 \\ & z=1+t \\ \end{align} \right. \)

B.  \( \left\{ \begin{align}  & x=1-3t \\  & y=0 \\  & z=1-t \\ \end{align} \right. \)     

C.  \( \left\{ \begin{align} & x=1-3t \\  & y=t \\  & z=1+t \\ \end{align} \right. \)     

D.  \( \left\{ \begin{align}  & x=1+3t \\  & y=0 \\  & z=1+t \\ \end{align} \right. \)

Hướng dẫn giải:

Đáp án A.

Đường thẳng d có một vectơ chỉ phương là  \( \vec{u}=(1;2;3) \).

Gọi  \( \Delta  \) là đường thẳng đi qua M, vuông góc với d và cắt Oz.

Gọi  \( N(0;0;t)=\Delta \cap Oz\Rightarrow \overrightarrow{MN}=(-1;0;t-1) \).

 \( \Delta \bot d\Leftrightarrow \overrightarrow{MN}.\vec{u}=0\Leftrightarrow t=\frac{4}{3}\Rightarrow \overrightarrow{MN}=\left( -1;0;\frac{1}{3} \right) \)

Khi đó \(\overrightarrow{MN}\) cùng phương với \({{\vec{u}}_{1}}=(-3;0;1)\).

Đường thẳng  \( \Delta  \) đi qua điểm M(1;0;1) và có một vectơ chỉ phương (-3;0;1) nên có phương trình:  \( \left\{ \begin{align} & x=1-3t \\ & y=0 \\  & z=1+t \\ \end{align} \right. \)

Các bài toán liên quan

Các bài toán mới!

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *