Tổng các nghiệm của phương trình \( {{\log }_{\sqrt{3}}}(x-2)+{{\log }_{3}}{{(x-4)}^{2}}=0 \) là \( S=a+b\sqrt{2} \) (với a, b là các số nguyên). Giá trị của biểu thức \( Q=a.b \) bằng
A. 0.
B. 3.
C. 9.
D. 6.
Hướng dẫn giải:
Chọn D
Điều kiện: \( 2<x\ne 4 \).
Phương trình tương đương: \( 2{{\log }_{3}}(x-2)+2{{\log }_{3}}\left| x-4 \right|=0 \)
\( \Leftrightarrow {{\log }_{3}}\left[ (x-2)\left| x-4 \right| \right]=0\Leftrightarrow (x-2)\left| x-4 \right|=1 \)
\( \Leftrightarrow \left[ \begin{align} & (x-2)(x-4)=1 \\ & (x-2)(x-4)=-1 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align} & {{x}^{2}}-6x+7=0 \\ & {{x}^{2}}-6x+9=0 \\ \end{align} \right. \) \( \Leftrightarrow \left[ \begin{align} & x=3\pm \sqrt{2} \\ & x=3 \\ \end{align} \right. \).
So lại điều kiện, ta nhận hai nghiệm \( {{x}_{1}}=3+\sqrt{2};\,\,{{x}_{2}}=3 \).
Ta được: \( S={{x}_{1}}+{{x}_{2}}=6+\sqrt{2}\Rightarrow a=6;\,\,b=1 \).
Vậy \( Q=a.b=6 \).
Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Toán - Lý - Hóa từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!