Xác định tọa độ các đỉnh và các tiêu điểm của các elip có phương trình sau:
a) \( 16{{x}^{2}}+25{{y}^{2}}=1 \)
b) \( 0,25{{x}^{2}}+9{{y}^{2}}=1 \).
Hướng dẫn giải:
a) Ta có: \( 16{{x}^{2}}+25{{y}^{2}}=1\Leftrightarrow \frac{{{x}^{2}}}{\frac{1}{16}}+\frac{{{y}^{2}}}{\frac{1}{25}}=1 \)
Do đó: \( {{A}_{1}}\left( -\frac{1}{4};0 \right),{{A}_{2}}\left( \frac{1}{4};0 \right),{{B}_{1}}\left( 0;-\frac{1}{5} \right),{{B}_{2}}\left( 0;\frac{1}{5} \right),{{F}_{1}}\left( -\frac{3}{20};0 \right),{{F}_{2}}\left( \frac{3}{20};0 \right) \).
b) Ta có: \( 0,25{{x}^{2}}+9{{y}^{2}}=1\Leftrightarrow \frac{{{x}^{2}}}{4}+\frac{{{y}^{2}}}{\frac{1}{9}}=1 \).
Vậy: \( {{A}_{1}}\left( -2;0 \right),{{A}_{2}}\left( 2;0 \right),{{B}_{1}}\left( 0;-\frac{1}{3} \right),{{B}_{2}}\left( 0;\frac{1}{3} \right),{{F}_{1}}\left( -\frac{\sqrt{35}}{3};0 \right),{{F}_{2}}\left( \frac{\sqrt{35}}{3};0 \right) \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!