Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong \( y=-{{x}^{3}}+12x \) và \( y=-{{x}^{2}} \).
A. \( S=\frac{937}{12} \)
B. \( S=\frac{343}{12} \)
C. \( S=\frac{793}{4} \)
D. \( S=\frac{397}{4} \)
Hướng dẫn giải:
Đáp án A.
Xét phương trình hoành độ giao điểm 2 đường cong:
\( -{{x}^{3}}+12x=-{{x}^{2}}\Leftrightarrow x({{x}^{2}}-x-12)=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=-3 \\ & x=4 \\ \end{align} \right. \)
\( \Rightarrow \) Diện tích cần tìm là: \( S=\int\limits_{-3}^{4}{\left| {{x}^{3}}-{{x}^{2}}-12x \right|dx}=\int\limits_{-3}^{0}{\left| {{x}^{3}}-{{x}^{2}}-12x \right|dx}+\int\limits_{0}^{4}{\left| {{x}^{3}}-{{x}^{2}}-12x \right|dx} \)
\( =\left| \int\limits_{-3}^{0}{({{x}^{3}}-{{x}^{2}}-12x)dx} \right|+\left| \int\limits_{0}^{4}{({{x}^{3}}-{{x}^{2}}-12x)dx} \right| \) \( =\left| \left. \left( \frac{{{x}^{4}}}{4}-\frac{{{x}^{3}}}{3}-6{{x}^{2}} \right) \right|_{-3}^{0} \right|+\left| \left. \left( \frac{{{x}^{4}}}{4}-\frac{{{x}^{3}}}{3}-6{{x}^{2}} \right) \right|_{0}^{4} \right| \)
\( =\left| \frac{-99}{4} \right|+\left| \frac{-160}{3} \right|=\frac{937}{12} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!