Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong y=−x^3+12x và y=−x^2.

Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong \( y=-{{x}^{3}}+12x \) và  \( y=-{{x}^{2}} \).

A. \( S=\frac{937}{12} \)

B.  \( S=\frac{343}{12} \)   

C.  \( S=\frac{793}{4} \)          

D.  \( S=\frac{397}{4} \)

Hướng dẫn giải:

Đáp án A.

Xét phương trình hoành độ giao điểm 2 đường cong:

 \( -{{x}^{3}}+12x=-{{x}^{2}}\Leftrightarrow x({{x}^{2}}-x-12)=0\Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=-3 \\  & x=4 \\ \end{align} \right. \)

 \( \Rightarrow \)  Diện tích cần tìm là:  \( S=\int\limits_{-3}^{4}{\left| {{x}^{3}}-{{x}^{2}}-12x \right|dx}=\int\limits_{-3}^{0}{\left| {{x}^{3}}-{{x}^{2}}-12x \right|dx}+\int\limits_{0}^{4}{\left| {{x}^{3}}-{{x}^{2}}-12x \right|dx} \)

 \( =\left| \int\limits_{-3}^{0}{({{x}^{3}}-{{x}^{2}}-12x)dx} \right|+\left| \int\limits_{0}^{4}{({{x}^{3}}-{{x}^{2}}-12x)dx} \right| \) \( =\left| \left. \left( \frac{{{x}^{4}}}{4}-\frac{{{x}^{3}}}{3}-6{{x}^{2}} \right) \right|_{-3}^{0} \right|+\left| \left. \left( \frac{{{x}^{4}}}{4}-\frac{{{x}^{3}}}{3}-6{{x}^{2}} \right) \right|_{0}^{4} \right| \)

 \( =\left| \frac{-99}{4} \right|+\left| \frac{-160}{3} \right|=\frac{937}{12} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

 

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *