Tìm tọa độ các đỉnh của elip (E) có phương trình chính tắc là x^2/a^2+y^2/b^2=1, biết rằng (E) đi qua điểm M(2;1) và các đỉnh trên trục nhỏ nhìn hai tiêu điểm dưới một góc vuông

Tìm tọa độ các đỉnh của elip (E) có phương trình chính tắc là \( \frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1 \), biết rằng (E) đi qua điểm M(2;1) và các đỉnh trên trục nhỏ nhìn hai tiêu điểm dưới một góc vuông.

Hướng dẫn giải:

Gọi B là đỉnh trên trục nhỏ; F1, F2 là hai tiêu điểm.

Khi đó tam giác F1BF2 vuông cân nên b = c. Do đó:  \( {{a}^{2}}={{b}^{2}}+{{c}^{2}}=2{{b}^{2}} \).

Mặt khác,  \( M\in (E) \) nên  \( \frac{4}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}=1 \). Từ đó suy ra:  \( {{b}^{2}}=3,{{a}^{2}}=6 \).

Vậy  \( {{A}_{1}}(-\sqrt{6};0),{{A}_{2}}(\sqrt{6};0),{{B}_{1}}(0;-\sqrt{3}),{{B}_{2}}(0;\sqrt{3}) \).

Các bài toán liên quan

Không tìm thấy bài viết nào.

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Fanpage Trung Tâm Luyện Thi Đại Học Nhân Tài Việt

Fanpage Trung Tâm Gia Sư Dạy Kèm Nhân Tài Việt

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *