Tìm tất cả giá trị của tham số m để hàm số y=−1/3x^3+(m−1)x^2+(m+3)x−10 đồng biến trên khoảng (0;3)

Tìm tất cả giá trị của tham số m để hàm số  \( y=-\frac{1}{3}{{x}^{3}}+\left( m-1 \right){{x}^{2}}+\left( m+3 \right)x-10 \) đồng biến trên khoảng  \( \left( 0;3 \right) \).

A. \( m\ge \frac{12}{7} \)

B. \( m<\frac{12}{7} \)

C. \( m>\frac{12}{7} \)              

D. \( \forall m\in \mathbb{R} \)

Hướng dẫn giải:

 Đáp án A.

Yêu cầu bài toán \( \Leftrightarrow {y}’=-{{x}^{2}}+2(m-1)x+(m+3)\ge 0,\forall x\in (0;3) \)

\(\Leftrightarrow (2x+1)m\ge {{x}^{2}}+2x-3,\forall x\in (0;3)\) (vì 2x +1 > 0 với \(\forall x\in (0;3)\))

\(\Leftrightarrow m\ge \frac{{{x}^{2}}+2x-3}{2x+1}=f(x),\forall x\in (0;3)\Leftrightarrow m\ge \underset{[0;3]}{\mathop \max f(x)}\,\)

Ta có: \( {f}'(x)=\frac{2{{x}^{2}}+2x+8}{{{(2x+1)}^{2}}}>0,\forall x\in \left[ 0;3 \right] \)

 \( \Rightarrow f(x) \) đồng biến trên  \( \left[ 0;3 \right] \)

\( \Rightarrow \underset{[0;3]}{\mathop \max f(x)}\,=f(3)=\frac{12}{7}\Leftrightarrow m\ge \frac{12}{7} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *