Tìm tất cả các giá trị thực của tham số m để phương trình e^3m+e^m=2(x+√(1-x^2))(1+x√(1-x^2)) có nghiệm

Tìm tất cả các giá trị thực của tham số m để phương trình ${{e}^{3m}}+{{e}^{m}}=2\left( x+\sqrt{1-{{x}^{2}}} \right)\left( 1+x\sqrt{1-{{x}^{2}}} \right)$ có nghiệm.

A. $\left( 0;\frac{1}{2}\ln 2 \right)$

B. $\left( -\infty ;\frac{1}{2}\ln 2 \right]$

C. $\left( 0;\frac{1}{e} \right)$                   

D. $\left[ \frac{1}{2}\ln 2;+\infty  \right)$

Hướng dẫn giải:

Đặt $t=x+\sqrt{1-{{x}^{2}}}\Rightarrow {{t}^{2}}=1+2x\sqrt{1-{{x}^{2}}}$ \( \Rightarrow x\sqrt{1-{{x}^{2}}}=\frac{{{t}^{2}}-1}{2} \)

Ta có: ${t}’=\frac{\sqrt{1-{{x}^{2}}}-x}{\sqrt{1-{{x}^{2}}}};{t}’=0\Leftrightarrow x=\frac{\sqrt{2}}{2}$

Vậy $t\in \left[ -1;\sqrt{2} \right]$.

Phương trình trở thành ${{e}^{3m}}+{{e}^{m}}=2t\left( 1+\frac{{{t}^{2}}-1}{2} \right)$

$\Leftrightarrow {{e}^{3m}}+{{e}^{m}}={{t}^{3}}+t\Leftrightarrow {{e}^{m}}=t$ (Sử dụng hàm đặc trưng)

Phương trình có nghiệm khi và chỉ khi \(-1\le {{e}^{m}}\le \sqrt{2}\Leftrightarrow m\le \ln \sqrt{2}\Leftrightarrow m\in \left( -\infty ;\frac{1}{2}\ln 2 \right]\)

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *