Tìm tất cả các giá trị thực của tham số m để phương trình ${{e}^{3m}}+{{e}^{m}}=2\left( x+\sqrt{1-{{x}^{2}}} \right)\left( 1+x\sqrt{1-{{x}^{2}}} \right)$ có nghiệm.
A. $\left( 0;\frac{1}{2}\ln 2 \right)$
B. $\left( -\infty ;\frac{1}{2}\ln 2 \right]$
C. $\left( 0;\frac{1}{e} \right)$
D. $\left[ \frac{1}{2}\ln 2;+\infty \right)$
Hướng dẫn giải:
Đặt $t=x+\sqrt{1-{{x}^{2}}}\Rightarrow {{t}^{2}}=1+2x\sqrt{1-{{x}^{2}}}$ \( \Rightarrow x\sqrt{1-{{x}^{2}}}=\frac{{{t}^{2}}-1}{2} \)
Ta có: ${t}’=\frac{\sqrt{1-{{x}^{2}}}-x}{\sqrt{1-{{x}^{2}}}};{t}’=0\Leftrightarrow x=\frac{\sqrt{2}}{2}$
Vậy $t\in \left[ -1;\sqrt{2} \right]$.
Phương trình trở thành ${{e}^{3m}}+{{e}^{m}}=2t\left( 1+\frac{{{t}^{2}}-1}{2} \right)$
$\Leftrightarrow {{e}^{3m}}+{{e}^{m}}={{t}^{3}}+t\Leftrightarrow {{e}^{m}}=t$ (Sử dụng hàm đặc trưng)
Phương trình có nghiệm khi và chỉ khi \(-1\le {{e}^{m}}\le \sqrt{2}\Leftrightarrow m\le \ln \sqrt{2}\Leftrightarrow m\in \left( -\infty ;\frac{1}{2}\ln 2 \right]\)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!