Tìm tất cả các giá trị thực của tham số m để hàm số y=(m−sinx)/cos^2x nghịch biến trên (0;π/6)

Tìm tất cả các giá trị thực của tham số m để hàm số  \( y=\frac{m-\sin x}{{{\cos }^{2}}x} \) nghịch biến trên  \( \left( 0;\frac{\pi }{6} \right) \).

A. m > 1

B. \(m\le \frac{5}{2} \)       

C. \( m\le \frac{5}{4} \)  

D. m < 2

Hướng dẫn giải:

 Đáp án C.

Đặt \( t=\sin x \overset{x\in \left( 0;\frac{\pi }{6} \right)}{\rightarrow} t\in \left( 0;\frac{1}{2} \right) \).

Vì sinx đồng biến trên \( \left( 0;\frac{\pi }{6} \right) \) nên bài toán được phát biểu lại là:

“Tìm tất cả các giá trị thực của tham số m để hàm số  \( f(t)=\frac{m-t}{{{t}^{2}}-1} \) nghịch biến trên khoảng  \( \left( 0;\frac{1}{2} \right) \)”.

Khi đó:  \( {f}'(t)=-\frac{{{t}^{2}}-2mt+1}{{{({{t}^{2}}-1)}^{2}}}\ge 0,\forall t\in \left( 0;\frac{1}{2} \right) \) \( \Leftrightarrow m\le \frac{{{t}^{2}}+1}{2t}=g(t),\forall t\in \left( 0;\frac{1}{2} \right)\Leftrightarrow m\le \underset{\left( 0;\frac{1}{2} \right]}{\mathop \min g(t)}\, \)

Xét hàm số \(g(t)=\frac{{{t}^{2}}+1}{2t}\) với \(t\in \left( 0;\frac{1}{2} \right]\) (do hàm số liên tục tại \(t=\frac{1}{2}\)).

Ta có: \({g}'(t)=\frac{{{t}^{2}}-1}{2{{t}^{2}}}=\frac{(t-1)(t+1)}{2{{t}^{2}}}<0,\forall t\in \left( 0;\frac{1}{2} \right]\), suy ra hàm số nghịch biến trên \(\left( 0;\frac{1}{2} \right]\)

Suy ra \(\underset{\left( 0;\frac{1}{2} \right]}{\mathop \min g(t)}\,=g\left( \frac{1}{2} \right)=\frac{5}{4}\).

Vậy \(m\le \frac{5}{4}\).

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Sách Toán học 12!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *