Tìm tất cả các giá trị thực của tham số m để đường thẳng y=2x+m cắt đồ thị của hàm số y=(x+3)/(x+1) tại hai điểm phân biệt

Tìm tất cả các giá trị thực của tham số m để đường thẳng \( y=2x+m  \) cắt đồ thị của hàm số  \( y=\frac{x+3}{x+1} \) tại hai điểm phân biệt.

A. \(m\in \left( -\infty ;+\infty \right)\)

B. \(m\in \left( -1;+\infty  \right)\)             

C. \(m\in \left( -2;4 \right)\)                         

D. \(m\in \left( -\infty ;-2 \right)\)

Hướng dẫn giải:

Đáp án A.

Phương trình hoành độ giao điểm:  \( \frac{x+3}{x+1}=2x+m  \)  (*), với điều kiện xác định  \( x\ne -1 \).

Biến đổi (*) về thành:  \( 2{{x}^{2}}+\left( m+1 \right)x+m-3=0 \) (**).

Theo yêu cầu đề bài, phương trình (**) cần có hai nghiệm phân biệt khác  \( -1 \), tức là:

\( \left\{ \begin{align}  & \Delta ={{\left( m+1 \right)}^{2}}-4.3.\left( m-3 \right)>0 \\ & 2.{{\left( -1 \right)}^{2}}+\left( m+1 \right).\left( -1 \right)+m-3\ne 0 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}  & {{m}^{2}}-6m+25>0 \\  & -2\ne 0 \\ \end{align} \right.\Leftrightarrow m\in \left( -\infty ;+\infty  \right) \)

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *