Tìm tất cả các giá trị của tham số m để phương trình −x^4+2x^2+3+2m=0 có 4 nghiệm phân biệt

Tìm tất cả các giá trị của tham số m để phương trình \( -{{x}^{4}}+2{{x}^{2}}+3+2m=0 \) có 4 nghiệm phân biệt.

A. \( -2\le m\le -\frac{3}{2} \)

B.  \( -\frac{3}{2}<m<2 \)   

C.  \( -2<m<-\frac{3}{2} \)      

D.  \( 3<m<4 \)

Hướng dẫn giải:

Đáp án C.

Ta có:  \( -{{x}^{4}}+2{{x}^{2}}+3+2m=0\Leftrightarrow {{x}^{4}}-2{{x}^{2}}-3=2m  \)

Lập bảng biến thiên của hàm số  \( y={{x}^{4}}-2{{x}^{2}}-3 \)

 


Số nghiệm của phương trình đã cho là số giao điểm của đồ thị hàm số  \( y={{x}^{4}}-2{{x}^{2}}-3 \) và đường thẳng  \( y=2m  \).

Từ bảng biến thiên ta thấy phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi

 \( -4<2m<-3\Leftrightarrow -2<m<-\frac{3}{2} \)

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *